zoukankan      html  css  js  c++  java
  • [问题2014A05] 解答

    [问题2014A05]  解答

    (1) 将矩阵 (A) 分解为两个矩阵的乘积:

    [A=egin{bmatrix} 1 & 1 & cdots & 1 & 1 \ x_1 & x_2 & cdots & x_n & x \ vdots & vdots &  & vdots & vdots \  x_1^{n-1} & x_2^{n-1} & cdots & x_n^{n-1} & x^{n-1} \  x_1^n & x_2^n & cdots & x_n^n & x^n end{bmatrix} egin{bmatrix} 1 & x_1 & cdots & x_1^{n-1} & 0 \ 1 & x_2 & cdots & x_2^{n-1} & 0 \ vdots & vdots &  & vdots & vdots \  1 & x_n & cdots & x_n^{n-1} & 0 \  0 & 0 & cdots & 0 & 1 end{bmatrix}.]

    由矩阵乘积的行列式等于行列式的乘积可得

    [|A|=egin{vmatrix} 1 & 1 & cdots & 1 & 1 \ x_1 & x_2 & cdots & x_n & x \ vdots & vdots &  & vdots & vdots \  x_1^{n-1} & x_2^{n-1} & cdots & x_n^{n-1} & x^{n-1} \  x_1^n & x_2^n & cdots & x_n^n & x^n end{vmatrix} egin{vmatrix} 1 & x_1 & cdots & x_1^{n-1} & 0 \ 1 & x_2 & cdots & x_2^{n-1} & 0 \ vdots & vdots &  & vdots & vdots \  1 & x_n & cdots & x_n^{n-1} & 0 \  0 & 0 & cdots & 0 & 1 end{vmatrix}]

    [=(x-x_1)(x-x_2)cdots(x-x_n)prod_{1leq i<jleq n}(x_j-x_i)^2.\,\,Box]

    (2) 记 (D_m) 为所求的行列式, 我们来求 (D_m) 的递推式. 显然, (D_1=|A|). 一般的, 我们可以选择第 (1) 行, 第 (m+1) 行, (cdots), 第 ((n-1)m+1) 行进行 Laplace 展开, 注意到包含于这 (n) 行可能非零的 (n) 阶子式只有一个, 即为 (|A|), 其对应的代数余子式即为 (D_{m-1}). 因此, 我们有 [D_m=|A|cdot D_{m-1},] 从而 (D_m=|A|^m).  (Box)

  • 相关阅读:
    sequence.c
     Link 
    转:MFC中屏蔽ESC和回车关闭对话框
    转:CWebBrowser2去除边框、滚动条、右键菜单
    VC:res协议——从模块中获取资源
    20131213
    20131212
    20131211
    20131205
    20131128
  • 原文地址:https://www.cnblogs.com/torsor/p/4083312.html
Copyright © 2011-2022 走看看