zoukankan      html  css  js  c++  java
  • Pulp之四:其它应用样例(1)-一般的整数规划问题 (设置目标约束函数)

    解如下整数线性规划
    maximize z = cx = 3x1 + 4x2 + 5x3
    subject to :
    x1 2 3 >= 0
    x1 + 2x2 < 20
    x2 + 3
    x3 <= 40

    import pulp as pulp
    
    def solve_ilp(objective , constraints) :
        print(objective)
        print(constraints)
        prob = pulp.LpProblem('LP1' , pulp.LpMaximize)
        prob += objective
        for cons in constraints :
            prob += cons
        print(prob)
        status = prob.solve()
        if status != 1 :
            return None
        else :
            return [v.varValue.real for v in prob.variables()]
    V_NUM = 3
    #变量,直接设置下限,约束条件中的不等式只支持>=或<=,不支持<和>
    #如果是解线性规划只需要在生成变量时cat = pulp.LpContinuous
    variables = [pulp.LpVariable('X%d'%i , lowBound = 0 , cat = pulp.LpInteger) for i in range(0 , V_NUM)]
    #目标函数
    c = [3 , 4 , 5]
    objective = sum([c[i]*variables[i] for i in range(0 , V_NUM)])
    #约束条件
    constraints = []
    
    a1 = [1 , 2 , 0]
    constraints.append(sum([a1[i]*variables[i] for i in range(0 , V_NUM)]) <= 20)
    a2 = [0 , 1 , 3]
    constraints.append(sum([a2[i]*variables[i] for i in range(0 , V_NUM)]) <= 40)
    print(constraints)
    
    res = solve_ilp(objective , constraints)
    print(res)
    

    运行结果:

  • 相关阅读:
    Netty Nio启动全流程
    线性表
    java stream 原理
    SpringBoot 分布式session
    mockito
    RxJava
    HandlerMapping 详解
    SpringMVC 架构
    Spring Cloud 配置服务
    SpringBoot常用配置简介
  • 原文地址:https://www.cnblogs.com/treasury-manager/p/13800460.html
Copyright © 2011-2022 走看看