zoukankan      html  css  js  c++  java
  • 吴裕雄 python神经网络 花朵图片识别(10)

    import os
    import numpy as np
    import matplotlib.pyplot as plt
    from PIL import Image, ImageChops
    from skimage import color,data,transform,io

    #获取所有数据文件夹名称
    fileList = os.listdir("F:\data\flowers")
    trainDataList = []
    trianLabel = []
    testDataList = []
    testLabel = []

    for j in range(len(fileList)):
    data = os.listdir("F:\data\flowers\"+fileList[j])
    testNum = int(len(data)*0.25)
    while(testNum>0):
    np.random.shuffle(data)
    testNum -= 1
    trainData = np.array(data[:-(int(len(data)*0.25))])
    testData = np.array(data[-(int(len(data)*0.25)):])
    for i in range(len(trainData)):
    if(trainData[i][-3:]=="jpg"):
    image = io.imread("F:\data\flowers\"+fileList[j]+"\"+trainData[i])
    image=transform.resize(image,(64,64))
    trainDataList.append(image)
    trianLabel.append(int(j))
    for i in range(len(testData)):
    if(testData[i][-3:]=="jpg"):
    image = io.imread("F:\data\flowers\"+fileList[j]+"\"+testData[i])
    image=transform.resize(image,(64,64))
    testDataList.append(image)
    testLabel.append(int(j))
    print("图片数据读取完了...")

    print(np.shape(trainDataList))
    print(np.shape(trianLabel))
    print(np.shape(testDataList))
    print(np.shape(testLabel))

    print("正在写磁盘...")
    np.save("G:\trainDataList",trainDataList)
    np.save("G:\trianLabel",trianLabel)
    np.save("G:\testDataList",testDataList)
    np.save("G:\testLabel",testLabel)
    print("数据处理完了...")

    import numpy as np
    from keras.utils import to_categorical

    trainLabel = np.load("G:\trianLabel.npy")
    testLabel = np.load("G:\testLabel.npy")
    trainLabel_encoded = to_categorical(trainLabel)
    testLabel_encoded = to_categorical(testLabel)
    np.save("G:\trianLabel",trainLabel_encoded)
    np.save("G:\testLabel",testLabel_encoded)
    print("转码类别写盘完了...")

     

    import random
    import numpy as np

    trainDataList = np.load("G:\trainDataList.npy")
    trianLabel = np.load("G:\trianLabel.npy")
    print("数据加载完了...")
    trainIndex = [i for i in range(len(trianLabel))]
    random.shuffle(trainIndex)
    trainData = []
    trainClass = []
    for i in range(len(trainIndex)):
    trainData.append(trainDataList[trainIndex[i]])
    trainClass.append(trianLabel[trainIndex[i]])
    print("训练数据shuffle完了...")
    np.save("G:\trainDataList",trainData)
    np.save("G:\trianLabel",trainClass)
    print("训练数据写盘完毕...")

    testDataList = np.load("G:\testDataList.npy")
    testLabel = np.load("G:\testLabel.npy")
    testIndex = [i for i in range(len(testLabel))]
    random.shuffle(testIndex)
    testData = []
    testClass = []
    for i in range(len(testIndex)):
    testData.append(testDataList[testIndex[i]])
    testClass.append(testLabel[testIndex[i]])
    print("测试数据shuffle完了...")
    np.save("G:\testDataList",testData)
    np.save("G:\testLabel",testClass)
    print("测试数据写盘完毕...")

    # coding: utf-8

    import tensorflow as tf
    from random import shuffle

    INPUT_NODE = 64*64
    OUT_NODE = 5
    IMAGE_SIZE = 64
    NUM_CHANNELS = 3
    NUM_LABELS = 5

    #第一层卷积层的尺寸和深度
    CONV1_DEEP = 16
    CONV1_SIZE = 5
    #第二层卷积层的尺寸和深度
    CONV2_DEEP = 32
    CONV2_SIZE = 5
    #全连接层的节点数
    FC_SIZE = 512

    def inference(input_tensor, train, regularizer):
    #卷积
    with tf.variable_scope('layer1-conv1'):
    conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
    tf.summary.histogram('convLayer1/weights1', conv1_weights)
    conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
    tf.summary.histogram('convLayer1/bias1', conv1_biases)
    conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
    tf.summary.histogram('convLayer1/conv1', conv1)
    relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
    tf.summary.histogram('ConvLayer1/relu1', relu1)
    #池化
    with tf.variable_scope('layer2-pool1'):
    pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    tf.summary.histogram('ConvLayer1/pool1', pool1)
    #卷积
    with tf.variable_scope('layer3-conv2'):
    conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
    tf.summary.histogram('convLayer2/weights2', conv2_weights)
    conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
    tf.summary.histogram('convLayer2/bias2', conv2_biases)
    #卷积向前学习
    conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
    tf.summary.histogram('convLayer2/conv2', conv2)
    relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
    tf.summary.histogram('ConvLayer2/relu2', relu2)
    #池化
    with tf.variable_scope('layer4-pool2'):
    pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    tf.summary.histogram('ConvLayer2/pool2', pool2)
    #变型
    pool_shape = pool2.get_shape().as_list()
    #计算最后一次池化后对象的体积(数据个数节点数像素个数)
    nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
    #根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
    reshaped = tf.reshape(pool2,[-1,nodes])

    #全连接层
    with tf.variable_scope('layer5-fc1'):
    fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
    if(regularizer != None):
    tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
    fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
    #预测
    fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
    if(train):
    fc1 = tf.nn.dropout(fc1,0.5)
    #全连接层
    with tf.variable_scope('layer6-fc2'):
    fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
    if(regularizer != None):
    tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
    fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
    #预测
    fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
    if(train):
    fc2 = tf.nn.dropout(fc2,0.5)
    #全连接层
    with tf.variable_scope('layer7-fc3'):
    fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
    if(regularizer != None):
    tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
    fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
    #预测
    logit = tf.matmul(fc2,fc3_weights)+fc3_biases
    return logit

    import time
    import keras
    import numpy as np
    from keras.utils import np_utils

    X = np.load("G:\trainDataList.npy")
    Y = np.load("G:\trianLabel.npy")
    print(np.shape(X))
    print(np.shape(Y))
    print(np.shape(testData))
    print(np.shape(testLabel))

    batch_size = 10
    n_classes=5
    epochs=16#循环次数
    learning_rate=1e-4
    batch_num=int(np.shape(X)[0]/batch_size)
    dropout=0.75

    x=tf.placeholder(tf.float32,[None,64,64,3])
    y=tf.placeholder(tf.float32,[None,n_classes])
    # keep_prob = tf.placeholder(tf.float32)
    #加载测试数据集
    test_X = np.load("G:\testDataList.npy")
    test_Y = np.load("G:\testLabel.npy")
    back = 64
    ro = int(len(test_X)/back)

    #调用神经网络方法
    pred=inference(x,1,"regularizer")
    cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))

    # 三种优化方法选择一个就可以
    optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
    # train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
    # train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost)

    #将预测label与真实比较
    correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    #计算准确率
    accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
    merged=tf.summary.merge_all()
    #将tensorflow变量实例化
    init=tf.global_variables_initializer()
    start_time = time.time()

    with tf.Session() as sess:
    sess.run(init)
    #保存tensorflow参数可视化文件
    writer=tf.summary.FileWriter('F:/Flower_graph', sess.graph)
    for i in range(epochs):
    for j in range(batch_num):
    offset = (j * batch_size) % (Y.shape[0] - batch_size)
    # 准备数据
    batch_data = X[offset:(offset + batch_size), :]
    batch_labels = Y[offset:(offset + batch_size), :]
    sess.run(optimizer, feed_dict={x:batch_data,y:batch_labels})
    result=sess.run(merged, feed_dict={x:batch_data,y:batch_labels})
    writer.add_summary(result, i)
    loss,acc = sess.run([cost,accuracy],feed_dict={x:batch_data,y:batch_labels})
    print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))
    writer.close()
    print("########################训练结束,下面开始测试###################")
    for i in range(ro):
    s = i*back
    e = s+back
    test_accuracy = sess.run(accuracy,feed_dict={x:test_X[s:e],y:test_Y[s:e]})
    print("step:%d test accuracy = %.4f%%" % (i,test_accuracy*100))
    print("Final test accuracy = %.4f%%" % (test_accuracy*100))

    end_time = time.time()
    print('Times:',(end_time-start_time))
    print('Optimization Completed')

    ...................................

  • 相关阅读:
    将图片转换为base64 格式
    BFC
    面试
    不足之处
    html 调用摄像头 并抓拍
    css,js零散知识的整理
    语义化标签SEO
    Modernizr
    快速排序(2)
    快速排序(1)
  • 原文地址:https://www.cnblogs.com/tszr/p/10089291.html
Copyright © 2011-2022 走看看