zoukankan      html  css  js  c++  java
  • 吴裕雄 python深度学习与实践(7)

    import cv2
    import numpy as np
    
    img = np.mat(np.zeros((300,300)))
    cv2.imshow("test",img)
    cv2.waitKey(0)
    import cv2
    import numpy as np
    
    img = np.mat(np.zeros((300,300),dtype=np.uint8))
    cv2.imshow("test",img)
    cv2.waitKey(0)
    import cv2
    import numpy as np
    
    image = np.mat(np.zeros((300,300)))
    imageByteArray = bytearray(image)
    print(imageByteArray)
    imageBGR = np.array(imageByteArray).reshape(800,900)
    cv2.imshow("cool",imageBGR)
    cv2.waitKey(0)
    import os
    import cv2
    import numpy as np
    
    randomByteArray = bytearray(os.urandom(120000))
    flatNumpyArray = np.array(randomByteArray).reshape(300,400)
    cv2.imshow("cool",flatNumpyArray)
    cv2.waitKey(0)
    import cv2
    import numpy as np
    img = np.zeros((300,300))
    img[0,0] = 255
    cv2.imshow("img",img)
    cv2.waitKey(0)
    import cv2
    import numpy as np
    
    img = np.zeros((300,300))
    img[:,10] = 255
    img[10,:] = 255
    cv2.imshow("img",img)
    cv2.waitKey(0)
    import cv2
    import numpy as np
    
    from scipy import ndimage
    
    kernel33 = np.array([[-1,-1,-1],
                         [-1,8,-1],
                         [-1,-1,-1]])
    
    kernel33_D = np.array([[1,1,1],
                           [1,-8,1],
                           [1,1,1]])
    
    img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg",0)
    linghtImg = ndimage.convolve(img,kernel33_D)
    cv2.imshow("img",linghtImg)
    cv2.waitKey()

    import numpy as np
    import cv2
    from scipy import ndimage
    
    img = cv2.imread("lena.jpg",0)
    blurred = cv2.GaussianBlur(img,(11,11),0)
    gaussImg = img - blurred
    cv2.imshow("img",gaussImg)
    cv2.waitKey()

    import numpy as np
    
    def convolve(dateMat,kernel):
        m,n = dateMat.shape
        km,kn = kernel.shape
        newMat = np.ones(((m - km + 1),(n - kn + 1)))
        tempMat = np.ones(((km),(kn)))
        for row in range(m - km + 1):
            for col in range(n - kn + 1):
                for m_k in range(km):
                    for n_k in range(kn):
                        tempMat[m_k,n_k] = dateMat[(row + m_k),(col + n_k)] * kernel[m_k,n_k]
                newMat[row,col] = np.sum(tempMat)
        return newMat
    
    dateMat = np.mat([
        [1,2,1,2,0,1,0,1,1],
        [0,3,1,1,0,0,1,0,1],
        [1,2,1,0,2,1,1,0,0],
        [2,2,0,1,1,1,1,1,0],
        [3,1,1,0,1,1,0,0,1],
        [1,0,1,1,1,0,0,1,1],
        [1,1,1,1,0,1,1,1,1],
        [1,0,1,1,0,1,0,1,0],
        [0,1,1,1,1,2,0,1,0]
    ])
    
    kernel = np.mat([
        [1,0,1],
        [0,-4,0],
        [1,0,1]
    ])
    
    newMat = convolve(dateMat,kernel)
    print(np.shape(newMat))
    print(newMat)

  • 相关阅读:
    HDU5418.Victor and World(状压DP)
    POJ2686 Traveling by Stagecoach(状压DP)
    POJ3254Corn Fields(状压DP)
    HDU5407.CRB and Candies(数论)
    CodeForces 352D. Jeff and Furik
    CodeForces 352C. Jeff and Rounding(贪心)
    LightOj 1282 Leading and Trailing
    Ural 1057. Amount of Degrees(数位DP)
    HDU 2089 不要62 (数位DP)
    HDU5366 The mook jong (DP)
  • 原文地址:https://www.cnblogs.com/tszr/p/10355621.html
Copyright © 2011-2022 走看看