zoukankan      html  css  js  c++  java
  • 吴裕雄 python深度学习与实践(11)

    import numpy as np 
    from matplotlib import pyplot as plt
    
    A = np.array([[5],[4]])
    C = np.array([[4],[6]])
    B = A.T.dot(C)
    AA = np.linalg.inv(A.T.dot(A)) 
    l=AA.dot(B)
    P=A.dot(l)
    x=np.linspace(-2,2,10)
    x.shape=(1,10)
    xx=A.dot(x)
    fig = plt.figure()
    ax= fig.add_subplot(111)
    ax.plot(xx[0,:],xx[1,:])
    ax.plot(A[0],A[1],'ko')
    
    ax.plot([C[0],P[0]],[C[1],P[1]],'r-o')
    ax.plot([0,C[0]],[0,C[1]],'m-o')
    
    ax.axvline(x=0,color='black')
    ax.axhline(y=0,color='black')
    
    margin=0.1
    ax.text(A[0]+margin, A[1]+margin, r"A",fontsize=20)
    ax.text(C[0]+margin, C[1]+margin, r"C",fontsize=20)
    ax.text(P[0]+margin, P[1]+margin, r"P",fontsize=20)
    ax.text(0+margin,0+margin,r"O",fontsize=20)
    ax.text(0+margin,4+margin, r"y",fontsize=20)
    ax.text(4+margin,0+margin, r"x",fontsize=20)
    plt.xticks(np.arange(-2,3))
    plt.yticks(np.arange(-2,3))
    
    ax.axis('equal')
    plt.show()

    x = [(2, 0, 3), (1, 0, 3), (1, 1, 3), (1,4, 2), (1, 2, 4)]
    y = [5, 6, 8, 10, 11]
    
    alpha = 0.02
    diff = [0, 0]
    error0 = 0
    error1 = 0
    w0 = 0
    w1 = 0
    w2 = 0
    
    cnt = 0
    while True:
        cnt += 1
        for i in range(len(x)):
            diff[0] = (w0 * x[i][0] + w1 * x[i][1] + w2 * x[i][2]) - y[i]
            w0 -= alpha * diff[0] * x[i][0]
            w1 -= alpha * diff[0] * x[i][1]
            w2 -= alpha * diff[0] * x[i][2]
        error1 = 0
        for lp in range(len(x)):
            error1 += (y[lp] - (w0 + w1 * x[lp][1] + w2 * x[lp][2])) ** 2 / 2
        if abs(error1 - error0) < 0.002:
            break
        else:
            error0 = error1
    
    print('theta0 : %f, theta1 : %f, theta2 : %f, error1 : %f' % (w0, w1, w2, error1))
    print('Done: theta0 : %f, theta1 : %f, theta2 : %f' % (w0, w1, w2))
    print('迭代次数: %d' % cnt)

    import math
    import random
    import numpy as np
    
    def rand(a, b):
        return (b - a) * random.random() + a
    
    def make_matrix(m,n,fill=0.0):
        mat = []
        for i in range(m):
            mat.append([fill] * n)
        return mat
    
    def sigmoid(x):  
        return 1.0 / (1.0 + math.exp(-x))
    
    def sigmod_derivate(x):
        return x * (1 - x)
    
    class BPNeuralNetwork:
        
        def __init__(self):
            self.input_n = 0
            self.hidden_n = 0
            self.output_n = 0
            self.input_cells = []
            self.hidden_cells = []
            self.output_cells = []
            self.input_weights = []
            self.output_weights = []
    
        def setup(self,ni,nh,no):
            self.input_n = ni + 1
            self.hidden_n = nh
            self.output_n = no
    
            self.input_cells = [1.0] * self.input_n
            self.hidden_cells = [1.0] * self.hidden_n
            self.output_cells = [1.0] * self.output_n
    
            self.input_weights = make_matrix(self.input_n,self.hidden_n)
            self.output_weights = make_matrix(self.hidden_n,self.output_n)
    
            # random activate
            for i in range(self.input_n):
                for h in range(self.hidden_n):
                    self.input_weights[i][h] = rand(-0.2, 0.2)
            for h in range(self.hidden_n):
                for o in range(self.output_n):
                    self.output_weights[h][o] = rand(-2.0, 2.0)
    
        def predict(self,inputs):
            for i in range(self.input_n - 1):
                self.input_cells[i] = inputs[i]
    
            for j in range(self.hidden_n):
                total = 0.0
                for i in range(self.input_n):
                    total += self.input_cells[i] * self.input_weights[i][j]
                self.hidden_cells[j] = sigmoid(total)
    
            for k in range(self.output_n):
                total = 0.0
                for j in range(self.hidden_n):
                    total += self.hidden_cells[j] * self.output_weights[j][k]
                self.output_cells[k] = sigmoid(total)
    
            return self.output_cells[:]
    
        def back_propagate(self,case,label,learn):
    
            self.predict(case)
            #计算输出层的误差
            output_deltas = [0.0] * self.output_n
            for k in range(self.output_n):
                error = label[k] - self.output_cells[k]
                output_deltas[k] = sigmod_derivate(self.output_cells[k]) * error
    
            #计算隐藏层的误差
            hidden_deltas = [0.0] * self.hidden_n
            for j in range(self.hidden_n):
                error = 0.0
                for k in range(self.output_n):
                    error += output_deltas[k] * self.output_weights[j][k]
                hidden_deltas[j] = sigmod_derivate(self.hidden_cells[j]) * error
    
            #更新输出层权重
            for j in range(self.hidden_n):
                for k in range(self.output_n):
                    self.output_weights[j][k] += learn * output_deltas[k] * self.hidden_cells[j]
    
            #更新隐藏层权重
            for i in range(self.input_n):
                for j in range(self.hidden_n):
                    self.input_weights[i][j] += learn * hidden_deltas[j] * self.input_cells[i]
    
            error = 0
            for o in range(len(label)):
                error += 0.5 * (label[o] - self.output_cells[o]) ** 2
    
            return error
    
        def train(self,cases,labels,limit = 100,learn = 0.05):
            for i in range(limit):
                error = 0
                for i in range(len(cases)):
                    label = labels[i]
                    case = cases[i]
                    error += self.back_propagate(case, label, learn)
            pass
    
        def test(self):
            cases = [
                [0, 0],
                [0, 1],
                [1, 0],
                [1, 1],
            ]
            labels = [[0], [1], [1], [0]]
            self.setup(2, 5, 1)
            self.train(cases, labels, 100000, 0.001)
            for case in cases:
                print(self.predict(case))
    
    if __name__ == '__main__':
        nn = BPNeuralNetwork()
        nn.test()

  • 相关阅读:
    &和&&的区别
    AOP和IOC的实现原理(用到的设计模式)
    字符串里有数字和字符,如何只获取一种(以数字为例)
    maven的搭建
    java中递归的方法的实例
    从零开始学习oracle
    各个浏览器的webdriver
    “equals”有值 与 “==”存在 “equals”只是比较值是否相同,值传递,==地址传递,null==a,避免引发空指针异常,STRING是一个对象==null,对象不存在,str.equals("")对象存在但是包含字符‘''
    Oracle基础入门
    orcale => 含义
  • 原文地址:https://www.cnblogs.com/tszr/p/10357422.html
Copyright © 2011-2022 走看看