zoukankan      html  css  js  c++  java
  • 吴裕雄 python 机器学习——数据预处理流水线Pipeline模型

    from sklearn.svm import LinearSVC
    from sklearn.pipeline import Pipeline
    from sklearn import neighbors, datasets
    from sklearn.datasets import load_digits
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    
    def load_diabetes():
        #使用 scikit-learn 自带的一个糖尿病病人的数据集
        diabetes = datasets.load_diabetes() 
        # 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
        return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0)  
    
    #数据预处理流水线Pipeline模型
    def test_Pipeline(X_train,X_test,y_train,y_test):
        steps=[("Linear_SVM",LinearSVC(C=1,penalty='l1',dual=False)),("LogisticRegression",LogisticRegression(C=1))]
        pipeline=Pipeline(steps)
        pipeline.fit(X_train,y_train)
        print("Named steps:",pipeline.named_steps)
        print("Pipeline Score:",pipeline.score(X_test,y_test))
        
    # 获取分类数据
    X_train,X_test,y_train,y_test=load_diabetes() 
    # 调用 test_Pipeline
    test_Pipeline(X_train,X_test,y_train,y_test)
  • 相关阅读:
    6 Django的视图层
    5 Django-2的路由层(URLconf)
    4 Django简介
    3 web框架
    2 http协议
    1 web应用
    15-jQuery补充
    14-jQuery的ajax
    13-轮播实现(各种)
    12-事件委托(事件代理)
  • 原文地址:https://www.cnblogs.com/tszr/p/10802179.html
Copyright © 2011-2022 走看看