zoukankan      html  css  js  c++  java
  • 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(3)

    import os
    import sys
    import random
    import math
    import re
    import time
    import numpy as np
    import cv2
    import matplotlib
    import matplotlib.pyplot as plt
    
    from config import Config
    import utils
    import model as modellib
    import visualize
    from model import log
    
    %matplotlib inline 
    
    # Root directory of the project
    ROOT_DIR = os.getcwd()
    
    # Directory to save logs and trained model
    MODEL_DIR = os.path.join(ROOT_DIR, "logs")
    
    # Local path to trained weights file
    COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
    # Download COCO trained weights from Releases if needed
    if not os.path.exists(COCO_MODEL_PATH):
        utils.download_trained_weights(COCO_MODEL_PATH)
    class ShapesConfig(Config):
        """Configuration for training on the toy shapes dataset.
        Derives from the base Config class and overrides values specific
        to the toy shapes dataset.
        """
        # Give the configuration a recognizable name
        NAME = "shapes"
    
        # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
        # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
        GPU_COUNT = 1
        IMAGES_PER_GPU = 8
    
        # Number of classes (including background)
        NUM_CLASSES = 1 + 3  # background + 3 shapes
    
        # Use small images for faster training. Set the limits of the small side
        # the large side, and that determines the image shape.
        IMAGE_MIN_DIM = 128
        IMAGE_MAX_DIM = 128
    
        # Use smaller anchors because our image and objects are small
        RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128)  # anchor side in pixels
    
        # Reduce training ROIs per image because the images are small and have
        # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
        TRAIN_ROIS_PER_IMAGE = 32
    
        # Use a small epoch since the data is simple
        STEPS_PER_EPOCH = 100
    
        # use small validation steps since the epoch is small
        VALIDATION_STEPS = 5
        
    config = ShapesConfig()
    config.display()

    def get_ax(rows=1, cols=1, size=8):
        """Return a Matplotlib Axes array to be used in
        all visualizations in the notebook. Provide a
        central point to control graph sizes.
        
        Change the default size attribute to control the size
        of rendered images
        """
        _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows))
        return ax
    class ShapesDataset(utils.Dataset):
        """Generates the shapes synthetic dataset. The dataset consists of simple
        shapes (triangles, squares, circles) placed randomly on a blank surface.
        The images are generated on the fly. No file access required.
        """
    
        def load_shapes(self, count, height, width):
            """Generate the requested number of synthetic images.
            count: number of images to generate.
            height,  the size of the generated images.
            """
            # Add classes
            self.add_class("shapes", 1, "square")
            self.add_class("shapes", 2, "circle")
            self.add_class("shapes", 3, "triangle")
    
            # Add images
            # Generate random specifications of images (i.e. color and
            # list of shapes sizes and locations). This is more compact than
            # actual images. Images are generated on the fly in load_image().
            for i in range(count):
                bg_color, shapes = self.random_image(height, width)
                self.add_image("shapes", image_id=i, path=None,
                               width=width, height=height,
                               bg_color=bg_color, shapes=shapes)
    
        def load_image(self, image_id):
            """Generate an image from the specs of the given image ID.
            Typically this function loads the image from a file, but
            in this case it generates the image on the fly from the
            specs in image_info.
            """
            info = self.image_info[image_id]
            bg_color = np.array(info['bg_color']).reshape([1, 1, 3])
            image = np.ones([info['height'], info['width'], 3], dtype=np.uint8)
            image = image * bg_color.astype(np.uint8)
            for shape, color, dims in info['shapes']:
                image = self.draw_shape(image, shape, dims, color)
            return image
    
        def image_reference(self, image_id):
            """Return the shapes data of the image."""
            info = self.image_info[image_id]
            if info["source"] == "shapes":
                return info["shapes"]
            else:
                super(self.__class__).image_reference(self, image_id)
    
        def load_mask(self, image_id):
            """Generate instance masks for shapes of the given image ID.
            """
            info = self.image_info[image_id]
            shapes = info['shapes']
            count = len(shapes)
            mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)
            for i, (shape, _, dims) in enumerate(info['shapes']):
                mask[:, :, i:i+1] = self.draw_shape(mask[:, :, i:i+1].copy(),
                                                    shape, dims, 1)
            # Handle occlusions
            occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8)
            for i in range(count-2, -1, -1):
                mask[:, :, i] = mask[:, :, i] * occlusion
                occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i]))
            # Map class names to class IDs.
            class_ids = np.array([self.class_names.index(s[0]) for s in shapes])
            return mask, class_ids.astype(np.int32)
    
        def draw_shape(self, image, shape, dims, color):
            """Draws a shape from the given specs."""
            # Get the center x, y and the size s
            x, y, s = dims
            if shape == 'square':
                cv2.rectangle(image, (x-s, y-s), (x+s, y+s), color, -1)
            elif shape == "circle":
                cv2.circle(image, (x, y), s, color, -1)
            elif shape == "triangle":
                points = np.array([[(x, y-s),
                                    (x-s/math.sin(math.radians(60)), y+s),
                                    (x+s/math.sin(math.radians(60)), y+s),
                                    ]], dtype=np.int32)
                cv2.fillPoly(image, points, color)
            return image
    
        def random_shape(self, height, width):
            """Generates specifications of a random shape that lies within
            the given height and width boundaries.
            Returns a tuple of three valus:
            * The shape name (square, circle, ...)
            * Shape color: a tuple of 3 values, RGB.
            * Shape dimensions: A tuple of values that define the shape size
                                and location. Differs per shape type.
            """
            # Shape
            shape = random.choice(["square", "circle", "triangle"])
            # Color
            color = tuple([random.randint(0, 255) for _ in range(3)])
            # Center x, y
            buffer = 20
            y = random.randint(buffer, height - buffer - 1)
            x = random.randint(buffer, width - buffer - 1)
            # Size
            s = random.randint(buffer, height//4)
            return shape, color, (x, y, s)
    
        def random_image(self, height, width):
            """Creates random specifications of an image with multiple shapes.
            Returns the background color of the image and a list of shape
            specifications that can be used to draw the image.
            """
            # Pick random background color
            bg_color = np.array([random.randint(0, 255) for _ in range(3)])
            # Generate a few random shapes and record their
            # bounding boxes
            shapes = []
            boxes = []
            N = random.randint(1, 4)
            for _ in range(N):
                shape, color, dims = self.random_shape(height, width)
                shapes.append((shape, color, dims))
                x, y, s = dims
                boxes.append([y-s, x-s, y+s, x+s])
            # Apply non-max suppression wit 0.3 threshold to avoid
            # shapes covering each other
            keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N), 0.3)
            shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
            return bg_color, shapes
    # Training dataset
    dataset_train = ShapesDataset()
    dataset_train.load_shapes(500, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
    dataset_train.prepare()
    
    # Validation dataset
    dataset_val = ShapesDataset()
    dataset_val.load_shapes(50, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
    dataset_val.prepare()
    # Load and display random samples
    image_ids = np.random.choice(dataset_train.image_ids, 4)
    for image_id in image_ids:
        image = dataset_train.load_image(image_id)
        mask, class_ids = dataset_train.load_mask(image_id)
        visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)

    # Create model in training mode
    model = modellib.MaskRCNN(mode="training", config=config,
                              model_dir=MODEL_DIR)
    # Which weights to start with?
    init_with = "coco"  # imagenet, coco, or last
    
    if init_with == "imagenet":
        model.load_weights(model.get_imagenet_weights(), by_name=True)
    elif init_with == "coco":
        # Load weights trained on MS COCO, but skip layers that
        # are different due to the different number of classes
        # See README for instructions to download the COCO weights
        model.load_weights(COCO_MODEL_PATH, by_name=True,
                           exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", 
                                    "mrcnn_bbox", "mrcnn_mask"])
    elif init_with == "last":
        # Load the last model you trained and continue training
        model.load_weights(model.find_last()[1], by_name=True)
    # Train the head branches
    # Passing layers="heads" freezes all layers except the head
    # layers. You can also pass a regular expression to select
    # which layers to train by name pattern.
    model.train(dataset_train, dataset_val, 
                learning_rate=config.LEARNING_RATE, 
                epochs=1, 
                layers='heads')

    # Fine tune all layers
    # Passing layers="all" trains all layers. You can also 
    # pass a regular expression to select which layers to
    # train by name pattern.
    model.train(dataset_train, dataset_val, 
                learning_rate=config.LEARNING_RATE / 10,
                epochs=2, 
                layers="all")

    # Save weights
    # Typically not needed because callbacks save after every epoch
    # Uncomment to save manually
    # model_path = os.path.join(MODEL_DIR, "mask_rcnn_shapes.h5")
    # model.keras_model.save_weights(model_path)
    class InferenceConfig(ShapesConfig):
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
    
    inference_config = InferenceConfig()
    
    # Recreate the model in inference mode
    model = modellib.MaskRCNN(mode="inference", 
                              config=inference_config,
                              model_dir=MODEL_DIR)
    
    # Get path to saved weights
    # Either set a specific path or find last trained weights
    # model_path = os.path.join(ROOT_DIR, ".h5 file name here")
    model_path = model.find_last()[1]
    
    # Load trained weights (fill in path to trained weights here)
    assert model_path != "", "Provide path to trained weights"
    print("Loading weights from ", model_path)
    model.load_weights(model_path, by_name=True)
    # Test on a random image
    image_id = random.choice(dataset_val.image_ids)
    original_image, image_meta, gt_class_id, gt_bbox, gt_mask =
        modellib.load_image_gt(dataset_val, inference_config, 
                               image_id, use_mini_mask=False)
    
    log("original_image", original_image)
    log("image_meta", image_meta)
    log("gt_class_id", gt_class_id)
    log("gt_bbox", gt_bbox)
    log("gt_mask", gt_mask)
    
    visualize.display_instances(original_image, gt_bbox, gt_mask, gt_class_id, 
                                dataset_train.class_names, figsize=(8, 8))

    results = model.detect([original_image], verbose=1)
    
    r = results[0]
    visualize.display_instances(original_image, r['rois'], r['masks'], r['class_ids'], 
                                dataset_val.class_names, r['scores'], ax=get_ax())

    # Compute VOC-Style mAP @ IoU=0.5
    # Running on 10 images. Increase for better accuracy.
    image_ids = np.random.choice(dataset_val.image_ids, 10)
    APs = []
    for image_id in image_ids:
        # Load image and ground truth data
        image, image_meta, gt_class_id, gt_bbox, gt_mask =
            modellib.load_image_gt(dataset_val, inference_config,
                                   image_id, use_mini_mask=False)
        molded_images = np.expand_dims(modellib.mold_image(image, inference_config), 0)
        # Run object detection
        results = model.detect([image], verbose=0)
        r = results[0]
        # Compute AP
        AP, precisions, recalls, overlaps =
            utils.compute_ap(gt_bbox, gt_class_id, gt_mask,
                             r["rois"], r["class_ids"], r["scores"], r['masks'])
        APs.append(AP)
        
    print("mAP: ", np.mean(APs))

  • 相关阅读:
    Gmail、还有人需要吗?
    Google 打不开
    不能忽视的Doctype
    ASP.NET2.0中用ICallbackEventHandler实现客户端与服务器端异步交互
    DataGrid常用小技巧
    ASP.NET程序安全性(三) 表单提交、过滤用户输入
    Objection!!!
    编写3dmax插件需要注意的几个问题
    又一个IGame的bug
    VC2010中的C++0x特性 Part 1:Lambdas,auto, static_assert
  • 原文地址:https://www.cnblogs.com/tszr/p/10868018.html
Copyright © 2011-2022 走看看