zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析

    # This Python 3 environment comes with many helpful analytics libraries installed
    # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
    # For example, here's several helpful packages to load in 
    
    import matplotlib.pyplot as plt
    import statsmodels.tsa.seasonal as smt
    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
    import random
    import datetime as dt
    from sklearn import linear_model 
    from sklearn.metrics import mean_absolute_error
    import plotly
    
    # import the relevant Keras modules
    from keras.models import Sequential
    from keras.layers import Activation, Dense
    from keras.layers import LSTM
    from keras.layers import Dropout
    
    # Input data files are available in the "../input/" directory.
    # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
    
    from subprocess import check_output
    import os
    os.chdir('F:\kaggleDataSet\price-volume\Stocks')
    #read data
    # kernels let us navigate through the zipfile as if it were a directory
    
    # trying to read a file of size zero will throw an error, so skip them
    # filenames = [x for x in os.listdir() if x.endswith('.txt') and os.path.getsize(x) > 0]
    # filenames = random.sample(filenames,1)
    filenames = ['prk.us.txt', 'bgr.us.txt', 'jci.us.txt', 'aa.us.txt', 'fr.us.txt', 'star.us.txt', 'sons.us.txt', 'ipl_d.us.txt', 'sna.us.txt', 'utg.us.txt']
    filenames = [filenames[1]]
    print(filenames)
    data = []
    for filename in filenames:
        df = pd.read_csv(filename, sep=',')
        label, _, _ = filename.split(sep='.')
        df['Label'] = filename
        df['Date'] = pd.to_datetime(df['Date'])
        data.append(df)

    traces = []
    for df in data:
        clr = str(r()) + str(r()) + str(r())
        df = df.sort_values('Date')
        label = df['Label'].iloc[0]
        trace = plotly.graph_objs.Scattergl(x=df['Date'],y=df['Close'])
        traces.append(trace)
        
    layout = plotly.graph_objs.Layout(title='Plot',)
    fig = plotly.graph_objs.Figure(data=traces, layout=layout)
    plotly.offline.init_notebook_mode(connected=True)
    plotly.offline.iplot(fig, filename='dataplot')

    df = data[0]
    window_len = 10
    
    #Create a data point (i.e. a date) which splits the training and testing set
    split_date = list(data[0]["Date"][-(2*window_len+1):])[0]
    
    #Split the training and test set
    training_set, test_set = df[df['Date'] < split_date], df[df['Date'] >= split_date]
    training_set = training_set.drop(['Date','Label', 'OpenInt'], 1)
    test_set = test_set.drop(['Date','Label','OpenInt'], 1)
    
    #Create windows for training
    LSTM_training_inputs = []
    for i in range(len(training_set)-window_len):
        temp_set = training_set[i:(i+window_len)].copy()
        
        for col in list(temp_set):
            temp_set[col] = temp_set[col]/temp_set[col].iloc[0] - 1
        LSTM_training_inputs.append(temp_set)
    LSTM_training_outputs = (training_set['Close'][window_len:].values/training_set['Close'][:-window_len].values)-1
    
    LSTM_training_inputs = [np.array(LSTM_training_input) for LSTM_training_input in LSTM_training_inputs]
    LSTM_training_inputs = np.array(LSTM_training_inputs)
    
    #Create windows for testing
    LSTM_test_inputs = []
    for i in range(len(test_set)-window_len):
        temp_set = test_set[i:(i+window_len)].copy()
        
        for col in list(temp_set):
            temp_set[col] = temp_set[col]/temp_set[col].iloc[0] - 1
        LSTM_test_inputs.append(temp_set)
    LSTM_test_outputs = (test_set['Close'][window_len:].values/test_set['Close'][:-window_len].values)-1
    
    LSTM_test_inputs = [np.array(LSTM_test_inputs) for LSTM_test_inputs in LSTM_test_inputs]
    LSTM_test_inputs = np.array(LSTM_test_inputs)
    def build_model(inputs, output_size, neurons, activ_func="linear",dropout=0.10, loss="mae", optimizer="adam"):
        model = Sequential()
        model.add(LSTM(neurons, input_shape=(inputs.shape[1], inputs.shape[2])))
        model.add(Dropout(dropout))
        model.add(Dense(units=output_size))
        model.add(Activation(activ_func))
        model.compile(loss=loss, optimizer=optimizer)
        return model
    # initialise model architecture
    nn_model = build_model(LSTM_training_inputs, output_size=1, neurons = 32)
    # model output is next price normalised to 10th previous closing price
    # train model on data
    # note: eth_history contains information on the training error per epoch
    nn_history = nn_model.fit(LSTM_training_inputs, LSTM_training_outputs, epochs=5, batch_size=1, verbose=2, shuffle=True)

    plt.plot(LSTM_test_outputs, label = "actual")
    plt.plot(nn_model.predict(LSTM_test_inputs), label = "predicted")
    plt.legend()
    plt.show()
    MAE = mean_absolute_error(LSTM_test_outputs, nn_model.predict(LSTM_test_inputs))
    print('The Mean Absolute Error is: {}'.format(MAE))

    #https://github.com/llSourcell/How-to-Predict-Stock-Prices-Easily-Demo/blob/master/lstm.py
    def predict_sequence_full(model, data, window_size):
        #Shift the window by 1 new prediction each time, re-run predictions on new window
        curr_frame = data[0]
        predicted = []
        for i in range(len(data)):
            predicted.append(model.predict(curr_frame[np.newaxis,:,:])[0,0])
            curr_frame = curr_frame[1:]
            curr_frame = np.insert(curr_frame, [window_size-1], predicted[-1], axis=0)
        return predicted
    
    predictions = predict_sequence_full(nn_model, LSTM_test_inputs, 10)
    
    plt.plot(LSTM_test_outputs, label="actual")
    plt.plot(predictions, label="predicted")
    plt.legend()
    plt.show()
    MAE = mean_absolute_error(LSTM_test_outputs, predictions)
    print('The Mean Absolute Error is: {}'.format(MAE))

    结论
    LSTM不能解决时间序列预测问题。对一个时间步长的预测并不比滞后模型好多少。如果我们增加预测的时间步长,性能下降的速度就不会像其他更传统的方法那么快。然而,在这种情况下,我们的误差增加了大约4.5倍。它随着我们试图预测的时间步长呈超线性增长。
  • 相关阅读:
    delphi 对TThread扩充TSimpleThread
    delphi 关于命名
    Delphi 实现Ini文件参数与TEdit和TCheckBox绑定(TSimpleParam)
    delphi 操作 TWebBrowser 实现自动填表(JQuery脚本与 OleVariant 方法)
    delphi idhttp 实战用法(TIdhttpEx)
    每周总结(10)
    每周总结(9)(补)
    每周总结(8)
    《大话设计模式》读书笔记(四)
    《大话设计模式》读书笔记(三)
  • 原文地址:https://www.cnblogs.com/tszr/p/11235914.html
Copyright © 2011-2022 走看看