zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析

    # This Python 3 environment comes with many helpful analytics libraries installed
    # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
    # For example, here's several helpful packages to load in 
    
    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
    
    # Input data files are available in the "../input/" directory.
    # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
    import os, sys
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import skimage.io
    from skimage.transform import resize
    from imgaug import augmenters as iaa
    from tqdm import tqdm
    import PIL
    from PIL import Image, ImageOps
    import cv2
    from sklearn.utils import class_weight, shuffle
    from keras.losses import binary_crossentropy
    from keras.applications.resnet50 import preprocess_input
    import keras.backend as K
    import tensorflow as tf
    from sklearn.metrics import f1_score, fbeta_score
    from keras.utils import Sequence
    from keras.utils import to_categorical
    from sklearn.model_selection import train_test_split

    WORKERS = 2
    CHANNEL = 3
    
    import warnings
    warnings.filterwarnings("ignore")
    IMG_SIZE = 512
    NUM_CLASSES = 5
    SEED = 77
    TRAIN_NUM = 1000 # use 1000 when you just want to explore new idea, use -1 for full train
    df_train = pd.read_csv('F:\kaggleDataSet\diabeticRetinopathy\trainLabels19.csv')
    df_test = pd.read_csv('F:\kaggleDataSet\diabeticRetinopathy\testImages19.csv')
    
    x = df_train['id_code']
    y = df_train['diagnosis']
    
    x, y = shuffle(x, y, random_state=SEED)
    train_x, valid_x, train_y, valid_y = train_test_split(x, y, test_size=0.15,stratify=y, random_state=SEED)
    print(train_x.shape, train_y.shape, valid_x.shape, valid_y.shape)
    train_y.hist()
    valid_y.hist()

    %%time
    fig = plt.figure(figsize=(25, 16))
    # display 10 images from each class
    for class_id in sorted(train_y.unique()):
        for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(5, random_state=SEED).iterrows()):
            ax = fig.add_subplot(5, 5, class_id * 5 + i + 1, xticks=[], yticks=[])
            path="F:\kaggleDataSet\diabeticRetinopathy\resized train 19\"+str(row['id_code'])+".jpg"
            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
            plt.imshow(image)
            ax.set_title('Label: %d-%d-%s' % (class_id, idx, row['id_code']) )

  • 相关阅读:
    javascript运动详解
    jQuery Ajax封装通用类 (linjq)
    Bootstrap 字体图标引用示例
    jQuery $.each用法
    jquery中odd和even选择器的用法说明
    JQuery中怎么设置class
    HTML5中input背景提示文字(placeholder)的CSS美化
    边框上下左右各部位隐藏显示详解
    纯CSS气泡框实现方法探究
    对比Tornado和Twisted两种异步Python框架
  • 原文地址:https://www.cnblogs.com/tszr/p/11237537.html
Copyright © 2011-2022 走看看