zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然深度学习TensorBoard可视化:监控指标可视化

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    # 1. 生成变量监控信息并定义生成监控信息日志的操作。
    SUMMARY_DIR = "F:\temp\log"
    BATCH_SIZE = 100
    TRAIN_STEPS = 3000
    
    def variable_summaries(var, name):
        with tf.name_scope('summaries'):
            tf.summary.histogram(name, var)
            mean = tf.reduce_mean(var)
            tf.summary.scalar('mean/' + name, mean)
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
            tf.summary.scalar('stddev/' + name, stddev)  
    # 2. 生成一层全链接的神经网络。
    def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
                variable_summaries(weights, layer_name + '/weights')
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
                variable_summaries(biases, layer_name + '/biases')
            with tf.name_scope('Wx_plus_b'):
                preactivate = tf.matmul(input_tensor, weights) + biases
                tf.summary.histogram(layer_name + '/pre_activations', preactivate)
            activations = act(preactivate, name='activation')        
            
            # 记录神经网络节点输出在经过激活函数之后的分布。
            tf.summary.histogram(layer_name + '/activations', activations)
            return activations
    def main():
        mnist = input_data.read_data_sets("F:\TensorFlowGoogle\201806-github\datasets\MNIST_data", one_hot=True)
    
        with tf.name_scope('input'):
            x = tf.placeholder(tf.float32, [None, 784], name='x-input')
            y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
    
        with tf.name_scope('input_reshape'):
            image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
            tf.summary.image('input', image_shaped_input, 10)
    
        hidden1 = nn_layer(x, 784, 500, 'layer1')
        y = nn_layer(hidden1, 500, 10, 'layer2', act=tf.identity)
    
        with tf.name_scope('cross_entropy'):
            cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
            tf.summary.scalar('cross_entropy', cross_entropy)
    
        with tf.name_scope('train'):
            train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
    
        with tf.name_scope('accuracy'):
            with tf.name_scope('correct_prediction'):
                correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            with tf.name_scope('accuracy'):
                accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            tf.summary.scalar('accuracy', accuracy)
    
        merged = tf.summary.merge_all()
    
        with tf.Session() as sess:
            
            summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)
            tf.global_variables_initializer().run()
    
            for i in range(TRAIN_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                # 运行训练步骤以及所有的日志生成操作,得到这次运行的日志。
                summary, _ = sess.run([merged, train_step], feed_dict={x: xs, y_: ys})
                # 将得到的所有日志写入日志文件,这样TensorBoard程序就可以拿到这次运行所对应的
                # 运行信息。
                summary_writer.add_summary(summary, i)
    
        summary_writer.close()
    if __name__ == '__main__':
        main()

     

  • 相关阅读:
    Net使用RdKafka引发异常RdKafka.Internal.LibRdKafka 的类型初始值设定项引发异常
    mysql数据与Hadoop之间导入导出之Sqoop实例
    如何将mysql数据导入Hadoop之Sqoop安装
    常见的几种Flume日志收集场景实战
    Restful服务应不应该在URI中加入版本号
    sudo
    shell实现SSH自动登陆
    使用465端口加密发邮件
    linux下c++如何输入不回显
    tmp
  • 原文地址:https://www.cnblogs.com/tszr/p/12098257.html
Copyright © 2011-2022 走看看