import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 1. 生成变量监控信息并定义生成监控信息日志的操作。 SUMMARY_DIR = "F:\temp\log" BATCH_SIZE = 100 TRAIN_STEPS = 3000 def variable_summaries(var, name): with tf.name_scope('summaries'): tf.summary.histogram(name, var) mean = tf.reduce_mean(var) tf.summary.scalar('mean/' + name, mean) stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev/' + name, stddev)
# 2. 生成一层全链接的神经网络。 def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): with tf.name_scope(layer_name): with tf.name_scope('weights'): weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1)) variable_summaries(weights, layer_name + '/weights') with tf.name_scope('biases'): biases = tf.Variable(tf.constant(0.0, shape=[output_dim])) variable_summaries(biases, layer_name + '/biases') with tf.name_scope('Wx_plus_b'): preactivate = tf.matmul(input_tensor, weights) + biases tf.summary.histogram(layer_name + '/pre_activations', preactivate) activations = act(preactivate, name='activation') # 记录神经网络节点输出在经过激活函数之后的分布。 tf.summary.histogram(layer_name + '/activations', activations) return activations
def main(): mnist = input_data.read_data_sets("F:\TensorFlowGoogle\201806-github\datasets\MNIST_data", one_hot=True) with tf.name_scope('input'): x = tf.placeholder(tf.float32, [None, 784], name='x-input') y_ = tf.placeholder(tf.float32, [None, 10], name='y-input') with tf.name_scope('input_reshape'): image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) tf.summary.image('input', image_shaped_input, 10) hidden1 = nn_layer(x, 784, 500, 'layer1') y = nn_layer(hidden1, 500, 10, 'layer2', act=tf.identity) with tf.name_scope('cross_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)) tf.summary.scalar('cross_entropy', cross_entropy) with tf.name_scope('train'): train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', accuracy) merged = tf.summary.merge_all() with tf.Session() as sess: summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph) tf.global_variables_initializer().run() for i in range(TRAIN_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) # 运行训练步骤以及所有的日志生成操作,得到这次运行的日志。 summary, _ = sess.run([merged, train_step], feed_dict={x: xs, y_: ys}) # 将得到的所有日志写入日志文件,这样TensorBoard程序就可以拿到这次运行所对应的 # 运行信息。 summary_writer.add_summary(summary, i) summary_writer.close()
if __name__ == '__main__': main()