zoukankan      html  css  js  c++  java
  • CentOS8下安装CUDA 10.2

    第一步:先安装好nvidia驱动

    第二步:打开终端,输入命令:nvcc --version,查看是否安装了cuda

    运行命令:nvidia-smi

    可以看到CUDA Version:10.2

    第三步:入官网下载cuda10.2版本,按下面选好后,会给出安装命令

    wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda-repo-rhel8-10-2-local-10.2.89-440.33.01-1.0-1.x86_64.rpm
    sudo rpm -i cuda-repo-rhel8-10-2-local-10.2.89-440.33.01-1.0-1.x86_64.rpm
    sudo dnf clean all
    sudo dnf -y module install nvidia-driver:latest-dkms
    sudo dnf -y install cuda

    第四步:打开~/.bashrc,加入配置信息
    [root@localhost ~]# vi ~/.bashrc

    export PATH=/usr/local/cuda/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

    更新~/.bashrc

    [root@localhost ~]# source ~/.bashrc

    重启后

    第五步:确认CUDA正确安装,运行命令

    $ nvcc --version
    $ nvidia-smi


    [root@localhost ~]# nvcc --version
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2019 NVIDIA Corporation
    Built on Wed_Oct_23_19:24:38_PDT_2019
    Cuda compilation tools, release 10.2, V10.2.89

    [root@localhost ~]# nvidia-smi
    Fri Jan 10 12:45:36 2020
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
    |-------------------------------+----------------------+----------------------+
    | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
    | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
    |===============================+======================+======================|
    | 0 GeForce GTX 650 Off | 00000000:02:00.0 N/A | N/A |
    | 21% 24C P8 N/A / N/A | 79MiB / 979MiB | N/A Default |
    +-------------------------------+----------------------+----------------------+

    +-----------------------------------------------------------------------------+
    | Processes: GPU Memory |
    | GPU PID Type Process name Usage |
    |=============================================================================|
    | 0 Not Supported |
    +-----------------------------------------------------------------------------+

    第六步:测试CUDA程序

    # mkdir cuda-samples

    # cuda-install-samples-10.2.sh cuda-samples/

    # cd ./cuda-samples/NVIDIA_CUDA-10.2_Samples/0_Simple/clock/

    # make

    [root@localhost ~]# mkdir cuda-samples
    [root@localhost ~]# cuda-install-samples-10.2.sh cuda-samples/
    Copying samples to cuda-samples/NVIDIA_CUDA-10.2_Samples now...
    Finished copying samples.

    [root@localhost ~]# cd ./cuda-samples/NVIDIA_CUDA-10.2_Samples/0_Simple/clock/
    [root@localhost clock]# make

    /usr/local/cuda-10.2/bin/nvcc -ccbin g++ -I../../common/inc -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o clock.o -c clock.cu
    /usr/local/cuda-10.2/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o clock clock.o
    mkdir -p ../../bin/x86_64/linux/release
    cp clock ../../bin/x86_64/linux/release

  • 相关阅读:
    SCAU 9504 面试
    SCAU 9503 懒人选座位
    SCAU 8628 相亲
    SCAU 10691 ACM 光环
    SCAU 8626 原子量计数
    SCAU 10674 等差对
    HDU ACM 1048 The Hardest Problem Ever (水题)
    SCAU 9502 ARDF
    SCAU 10686 DeathGod不知道的事情
    SCAU 8629 热身游戏(高精度)
  • 原文地址:https://www.cnblogs.com/ttrrpp/p/12175608.html
Copyright © 2011-2022 走看看