zoukankan      html  css  js  c++  java
  • 【Gym-102822C/2020CCPC绵阳C】Code a Trie(大力分类讨论+Trie树/字典树+贪心)

    题目链接:http://codeforces.com/gym/102822/problem/C

    参考题解:https://blog.csdn.net/qq_39599067/article/details/109579930

    题目大意

    参考题解里面题意已经写的很清楚了,我就不复读了。

    思路

    无解情况为:

    1. 两个字符串相同但是权值不同。-> 用(map)维护即可

    2. 多个权值对应的 (LCA) 是同一节点。-> 每次标记 (LCA) 时查询一下即可。

    3. (rt)到某个 (lca) 路径上存在 (die) 节点。-> 跑一遍 (dfs) 即可。

    假设有 (m) 个字符串权值相同,他们在 (lca) 后的出边是: (a) , (b) , (c) , (d)
    可以肯定的是这四条出边对应节点的子树内不能有其他权值的 (lca) 节点。
    我们将 (lca) 这些出边对应的节点标记为不可能存在的节点,即 (die[node]=1)

    注意到多个串如果具有相同的值,那么肯定会在其 (LCA) 处分离。那么对于这些多串,也就应该在 (LCA) 处断裂,对于延伸出来的子树应当不再存在。

    举个例子:

    3
    ab 1
    ac 1
    ad 2
    

    那么其构成的字典树为:

    那么对于节点 (2) 延伸出去的 (b) 边和 (c) 边指向的节点,其不能够再存在子树。

    标记后结果如下:

    构建完成后,保证有解之后开始统计最少的节点个数。

    如果一个节点 (u) 本身不是 (LCA), 其存在子节点的 (lca) 个数为 (1),那么则将这个子节点翻到节点 (u),这一过程能够用 (vis) 数组进行维护,来判断当前节点是否有必要存在。

    AC代码

    #include <bits/stdc++.h>
    
    #define SZ(x) (int)x.size()
    using namespace std;
    const int MAXN = 1e5 + 5;
    const int MAXLOG = 22;
    namespace Discrete {
        int b[MAXN], btol, blen;
    
        void insert(int x) { b[btol++] = x; }
    
        void init() {
            sort(b, b + btol);
            blen = unique(b, b + btol) - b;
        }
    
        int val2id(int x) {
            return lower_bound(b, b + blen, x) - b + 1;
        }
    }
    using Discrete::val2id;
    
    
    class TRIE {
    public:
        int T[MAXN][26], top;
    
        void init() {
            top = 1;
            memset(T[top], 0, sizeof(T[top]));
        }
    
        int insert(const string &s, int n) {
            int u = 1;
            for (int i = 0; i < n; i++) {
                int ch = s[i] - 'a';
                if (!T[u][ch]) {
                    T[u][ch] = ++top;
                    memset(T[top], 0, sizeof(T[top]));
                }
                u = T[u][ch];
            }
            return u;
        }
    
        int dep[MAXN], fa[MAXN][MAXLOG], lg[MAXN];
    
        void init(int _n) {
            for (int i = 1; i <= _n; i++) {
                lg[i] = lg[i - 1] + (1 << lg[i - 1] == i);
            }
        }
    
    
        inline void dfs(int u, int f) {
            fa[u][0] = f, dep[u] = dep[f] + 1;
            for (int i = 1; i <= lg[dep[u]]; i++) fa[u][i] = fa[fa[u][i - 1]][i-1];
            for (int i = 0; i < 26; i++) {
                int v = T[u][i];
                if (v == f) continue;
                if (v) dfs(v, u);
            }
        }
    
        void get_lca() {
            for (int i = 1; i <= top; i++) memset(fa[i], 0, sizeof(fa[i]));
            dep[1] = 0;
            dfs(1, 1);
        }
    
        int LCA(int u, int v) {
            if (dep[u] < dep[v]) swap(u, v);
            while (dep[u] > dep[v]) u = fa[u][lg[dep[u] - dep[v]] - 1];
            if (u == v) return u;
            for (int k = lg[dep[u]] - 1; k >= 0; k--) {
                if (fa[u][k] != fa[v][k]) u = fa[u][k], v = fa[v][k];
            }
            return fa[u][0];
        }
    
        int lca_val[MAXN], die[MAXN];
    
        void find_lca_init() {
            for (int i = 1; i <= top; i++) lca_val[i] = 0;
            for (int i = 1; i <= top; i++) die[i] = 0;
        }
    
        int dfs_die(int u, int die_flag) {
            if (die[u]) die_flag = 1;
            if (lca_val[u] && die_flag) return 0;
            for (int i = 0; i < 26; i++) {
                int v = T[u][i];
                if (v) {
                    if (!dfs_die(v, die_flag)) return 0;
                }
            }
            return 1;
        }
    
        int lca_cnt[MAXN], vis[MAXN];
    
        inline void dfs_ans(int u) {
            int fg = 0;
            for (int i = 0; i < 26; i++) {
                int v = T[u][i];
                if (v) {
                    dfs_ans(v);
                    lca_cnt[u] += lca_cnt[v];
                    if (lca_cnt[v] == 1) {
                        fg = v; //break;
                    }
                }
            }
            if (lca_val[u]) lca_cnt[u]++;
            if (!lca_val[u] && fg) {
                vis[u] = 1, vis[fg] = 0;
            } else if (lca_cnt[u]) vis[u] = 1;
    
        }
    
        int solve() {
            for (int i = 1; i <= top; i++) lca_cnt[i] = vis[i] = 0;
            dfs_ans(1);
            int ans = 0;
            for (int i = 1; i <= top; i++) ans += vis[i];//, printf("%d
    ", lca_cnt[i]);
            return ans;
        }
    
    } tree;
    
    
    string str[MAXN];
    int val[MAXN], endpos[MAXN];
    vector<int> vec[MAXN];
    
    int main() {
        tree.init(MAXN - 1); // init for lg
        int T;
        cin >> T;
        int kass = 1;
        while (T--) {
            Discrete::btol = 0;
            int n;
            cin >> n;
            for (int i = 1; i <= n; i++) {
                cin >> str[i] >> val[i];
                Discrete::insert(val[i]);
            }
            Discrete::init();
            for (int i = 1; i <= n; i++) val[i] = val2id(val[i]);
    
            unordered_map<int, int> ma; // same string two val
            int res = 1;
    
            tree.init();
            for (int i = 1; i <= n; i++) {
                endpos[i] = tree.insert(str[i], SZ(str[i]));
                if (ma.find(endpos[i]) != ma.end()) {
                    if (ma[endpos[i]] != val[i]) {
                        res = 0;
                        break;
                    }
                }
                ma[endpos[i]] = val[i];
            }
    
            if (!res) { // no result
                printf("Case #%d: -1
    ", kass++);
                continue;
            }
    
            tree.get_lca();
    
            for (int i = 1; i <= Discrete::blen; i++) vec[i].clear();
            for (int i = 1; i <= n; i++) {
                vec[val[i]].push_back(i);
            }
    
    
            tree.find_lca_init();
            for (int i = 1; i <= Discrete::blen; i++) {
                int lca = endpos[vec[i][0]];
                for (int j = 1; j < SZ(vec[i]); j++) lca = tree.LCA(lca, endpos[vec[i][j]]);
                if (tree.lca_val[lca]) {
                    res = 0;    // two value have same lca
                    break;
                } else {
                    tree.lca_val[lca] = i;
                    int k = tree.dep[lca];
                    for (auto e: vec[i]) {
                        if (SZ(str[e]) >= k) {
                            //   printf("%d
    ", tree.T[lca][str[e][k - 1]-'a']);
                            tree.die[tree.T[lca][str[e][k - 1]-'a']] = 1;
                        }
                    }
                }
            }
    
            if (!res) { // no result
                printf("Case #%d: -1
    ", kass++);
                continue;
            }
    
            if (!tree.dfs_die(1, 0)) {
                printf("Case #%d: -1
    ", kass++);
                continue;
            }
    
            printf("Case #%d: %d
    ", kass++, tree.solve());
    
        }
    }
    
    /*
    4
    s 748384849
    aeqa 748384849
    succk 40574105
    a 332084817
     */
    
    #include <bits/stdc++.h>
    
    #define SZ(x) (int)x.size()
    using namespace std;
    const int MAXN = 1e5 + 5;
    const int MAXLOG = 22;
    namespace Discrete {
        int b[MAXN], btol, blen;
    
        void insert(int x) { b[btol++] = x; }
    
        void init() {
            sort(b, b + btol);
            blen = unique(b, b + btol) - b;
        }
    
        int val2id(int x) {
            return lower_bound(b, b + blen, x) - b + 1;
        }
    }
    using Discrete::val2id;
    
    
    class TRIE {
    public:
        int T[MAXN][26], top;
    
        void init() {
            top = 1;
            memset(T[top], 0, sizeof(T[top]));
        }
    
        int insert(const string &s, int n) {
            int u = 1;
            for (int i = 0; i < n; i++) {
                int ch = s[i] - 'a';
                if (!T[u][ch]) {
                    T[u][ch] = ++top;
                    memset(T[top], 0, sizeof(T[top]));
                }
                u = T[u][ch];
            }
            return u;
        }
    
        int dep[MAXN], fa[MAXN][MAXLOG], lg[MAXN];
    
        void init(int _n) {
            for (int i = 1; i <= _n; i++) {
                lg[i] = lg[i - 1] + (1 << lg[i - 1] == i);
            }
        }
    
    
        inline void dfs(int u, int f) {
            fa[u][0] = f, dep[u] = dep[f] + 1;
            for (int i = 1; i <= lg[dep[u]]; i++) fa[u][i] = fa[fa[u][i - 1]][i-1];
            for (int i = 0; i < 26; i++) {
                int v = T[u][i];
                if (v == f) continue;
                if (v) dfs(v, u);
            }
        }
    
        void get_lca() {
            for (int i = 1; i <= top; i++) memset(fa[i], 0, sizeof(fa[i]));
            dep[1] = 0;
            dfs(1, 1);
        }
    
        int LCA(int u, int v) {
            if (dep[u] < dep[v]) swap(u, v);
            while (dep[u] > dep[v]) u = fa[u][lg[dep[u] - dep[v]] - 1];
            if (u == v) return u;
            for (int k = lg[dep[u]] - 1; k >= 0; k--) {
                if (fa[u][k] != fa[v][k]) u = fa[u][k], v = fa[v][k];
            }
            return fa[u][0];
        }
    
        int lca_val[MAXN], die[MAXN];
    
        void find_lca_init() {
            for (int i = 1; i <= top; i++) lca_val[i] = 0;
            for (int i = 1; i <= top; i++) die[i] = 0;
        }
    
        int dfs_die(int u, int die_flag) {
            if (die[u]) die_flag = 1;
            if (lca_val[u] && die_flag) return 0;
            for (int i = 0; i < 26; i++) {
                int v = T[u][i];
                if (v) {
                    if (!dfs_die(v, die_flag)) return 0;
                }
            }
            return 1;
        }
    
        int lca_cnt[MAXN], vis[MAXN];
    
        inline void dfs_ans(int u) {
            int fg = 0;
            for (int i = 0; i < 26; i++) {
                int v = T[u][i];
                if (v) {
                    dfs_ans(v);
                    lca_cnt[u] += lca_cnt[v];
                    if (lca_cnt[v] == 1) {
                        fg = v; //break;
                    }
                }
            }
            if (lca_val[u]) lca_cnt[u]++;
            if (!lca_val[u] && fg) {
                vis[u] = 1, vis[fg] = 0;
            } else if (lca_cnt[u]) vis[u] = 1;
    
        }
    
        int solve() {
            for (int i = 1; i <= top; i++) lca_cnt[i] = vis[i] = 0;
            dfs_ans(1);
            int ans = 0;
            for (int i = 1; i <= top; i++) ans += vis[i];//, printf("%d
    ", lca_cnt[i]);
            return ans;
        }
    
    
    } tree;
    
    
    string str[MAXN];
    int val[MAXN], endpos[MAXN];
    vector<int> vec[MAXN];
    
    int main() {
        tree.init(MAXN - 1); // init for lg
        int T;
        cin >> T;
        int kass = 1;
        while (T--) {
            Discrete::btol = 0;
            int n;
            cin >> n;
            for (int i = 1; i <= n; i++) {
                cin >> str[i] >> val[i];
                Discrete::insert(val[i]);
            }
            Discrete::init();
            for (int i = 1; i <= n; i++) val[i] = val2id(val[i]);
    
            unordered_map<int, int> ma; // same string two val
            int res = 1;
    
            tree.init();
            for (int i = 1; i <= n; i++) {
                endpos[i] = tree.insert(str[i], SZ(str[i]));
                if (ma.find(endpos[i]) != ma.end()) {
                    if (ma[endpos[i]] != val[i]) {
                        res = 0;
                        break;
                    }
                }
                ma[endpos[i]] = val[i];
            }
    
            if (!res) { // no result
                printf("Case #%d: -1
    ", kass++);
                continue;
            }
    
            tree.get_lca();
    
            for (int i = 1; i <= Discrete::blen; i++) vec[i].clear();
            for (int i = 1; i <= n; i++) {
                vec[val[i]].push_back(i);
            }
    
    
            tree.find_lca_init();
            for (int i = 1; i <= Discrete::blen; i++) {
                int lca = endpos[vec[i][0]];
                for (int j = 1; j < SZ(vec[i]); j++) lca = tree.LCA(lca, endpos[vec[i][j]]);
                if (tree.lca_val[lca]) {
                    res = 0;    // two value have same lca
                    break;
                } else {
                    tree.lca_val[lca] = i;
                    int k = tree.dep[lca];
                    for (auto e: vec[i]) {
                        if (SZ(str[e]) >= k) {
                            //   printf("%d
    ", tree.T[lca][str[e][k - 1]-'a']);
                            tree.die[tree.T[lca][str[e][k - 1]-'a']] = 1;
                        }
                    }
                }
            }
    
            if (!res) { // no result
                printf("Case #%d: -1
    ", kass++);
                continue;
            }
    
            if (!tree.dfs_die(1, 0)) {
                printf("Case #%d: -1
    ", kass++);
                continue;
            }
    
            printf("Case #%d: %d
    ", kass++, tree.solve());
    
        }
    }
    
    /*
    4
    s 748384849
    aeqa 748384849
    succk 40574105
    a 332084817
     */
    

    反思

    在赛场上感觉这道题能够贪,但是非常难写,同时卡了很久的博弈和杂题,也就没有思考这道题了。还有一点非常重要就是赛场上没有想到 (LCA) 的重要信息,这就是当时觉得非常难写的原因。

    赛后Hartley乱搞就过了,我调了半天还在WA,Hartley给了个转换标记信息做法,就是上面的代码1部分。后来发现是求LCA部分写裂了,模板不熟。于是就有了两份代码……

    对于不存在的情况需要大力讨论,对于 (die) 节点的意义一开始没有想到。

  • 相关阅读:
    Angular Material Starter App
    缺少标识符、字符串或数字
    jquery ajax post 传递数组 ,多checkbox 取值
    Circular dependencies cannot exist in RelativeLayout
    第二次作业
    第一次作业
    第一次作业
    软工实践个人总结
    第01组 Beta版本演示
    第01组 Beta冲刺(4/5)
  • 原文地址:https://www.cnblogs.com/tudouuuuu/p/14016363.html
Copyright © 2011-2022 走看看