zoukankan      html  css  js  c++  java
  • Hadoop自带Sort例子分析

    /**
     * Licensed to the Apache Software Foundation (ASF) under one
     * or more contributor license agreements.  See the NOTICE file
     * distributed with this work for additional information
     * regarding copyright ownership.  The ASF licenses this file
     * to you under the Apache License, Version 2.0 (the
     * "License"); you may not use this file except in compliance
     * with the License.  You may obtain a copy of the License at
     *
     *     http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    package org.apache.hadoop.examples;
    
    import java.io.IOException;
    import java.net.URI;
    import java.util.*;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.mapreduce.filecache.DistributedCache;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.BytesWritable;
    import org.apache.hadoop.io.Writable;
    import org.apache.hadoop.io.WritableComparable;
    import org.apache.hadoop.mapred.ClusterStatus;
    import org.apache.hadoop.mapred.JobClient;
    import org.apache.hadoop.mapreduce.*;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.partition.InputSampler;
    import org.apache.hadoop.mapreduce.lib.partition.TotalOrderPartitioner;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    /**
     * This is the trivial map/reduce program that does absolutely nothing
     * other than use the framework to fragment and sort the input values.
     *
     * To run: bin/hadoop jar build/hadoop-examples.jar sort
     *            [-r <i>reduces</i>]
     *            [-inFormat <i>input format class</i>]
     *            [-outFormat <i>output format class</i>]
     *            [-outKey <i>output key class</i>]
     *            [-outValue <i>output value class</i>]
     *            [-totalOrder <i>pcnt</i> <i>num samples</i> <i>max splits</i>]
     *            <i>in-dir</i> <i>out-dir</i>
     */
    public class Sort<K,V> extends Configured implements Tool {
      public static final String REDUCES_PER_HOST =
        "mapreduce.sort.reducesperhost";
      private Job job = null;
    
      static int printUsage() {
        System.out.println("sort [-r <reduces>] " +
                           "[-inFormat <input format class>] " +
                           "[-outFormat <output format class>] " +
                           "[-outKey <output key class>] " +
                           "[-outValue <output value class>] " +
                           "[-totalOrder <pcnt> <num samples> <max splits>] " +
                           "<input> <output>");
        ToolRunner.printGenericCommandUsage(System.out);
        return 2;
      }
    
      /**
       * The main driver for sort program.
       * Invoke this method to submit the map/reduce job.
       * @throws IOException When there is communication problems with the
       *                     job tracker.
       */
      public int run(String[] args) throws Exception {
    
        Configuration conf = getConf();
        JobClient client = new JobClient(conf);
        ClusterStatus cluster = client.getClusterStatus();
        int num_reduces = (int) (cluster.getMaxReduceTasks() * 0.9);
        String sort_reduces = conf.get(REDUCES_PER_HOST);
        if (sort_reduces != null) {
           num_reduces = cluster.getTaskTrackers() *
                           Integer.parseInt(sort_reduces);
        }
        Class<? extends InputFormat> inputFormatClass =
          SequenceFileInputFormat.class;
        Class<? extends OutputFormat> outputFormatClass =
          SequenceFileOutputFormat.class;
        Class<? extends WritableComparable> outputKeyClass = BytesWritable.class;
        Class<? extends Writable> outputValueClass = BytesWritable.class;
        List<String> otherArgs = new ArrayList<String>();
        InputSampler.Sampler<K,V> sampler = null;
        for(int i=0; i < args.length; ++i) {
          try {
            if ("-r".equals(args[i])) {
              num_reduces = Integer.parseInt(args[++i]);
            } else if ("-inFormat".equals(args[i])) {
              inputFormatClass =
                Class.forName(args[++i]).asSubclass(InputFormat.class);
            } else if ("-outFormat".equals(args[i])) {
              outputFormatClass =
                Class.forName(args[++i]).asSubclass(OutputFormat.class);
            } else if ("-outKey".equals(args[i])) {
              outputKeyClass =
                Class.forName(args[++i]).asSubclass(WritableComparable.class);
            } else if ("-outValue".equals(args[i])) {
              outputValueClass =
                Class.forName(args[++i]).asSubclass(Writable.class);
            } else if ("-totalOrder".equals(args[i])) {
              double pcnt = Double.parseDouble(args[++i]);
              int numSamples = Integer.parseInt(args[++i]);
              int maxSplits = Integer.parseInt(args[++i]);
              if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE;
              sampler =
                new InputSampler.RandomSampler<K,V>(pcnt, numSamples, maxSplits);
            } else {
              otherArgs.add(args[i]);
            }
          } catch (NumberFormatException except) {
            System.out.println("ERROR: Integer expected instead of " + args[i]);
            return printUsage();
          } catch (ArrayIndexOutOfBoundsException except) {
            System.out.println("ERROR: Required parameter missing from " +
                args[i-1]);
            return printUsage(); // exits
          }
        }
        // Set user-supplied (possibly default) job configs
        job = Job.getInstance(conf);
        job.setJobName("sorter");
        job.setJarByClass(Sort.class);
    
        job.setMapperClass(Mapper.class);
        job.setReducerClass(Reducer.class);
    
        job.setNumReduceTasks(num_reduces);
    
        job.setInputFormatClass(inputFormatClass);
        job.setOutputFormatClass(outputFormatClass);
    
        job.setOutputKeyClass(outputKeyClass);
        job.setOutputValueClass(outputValueClass);
    
        // Make sure there are exactly 2 parameters left.
        if (otherArgs.size() != 2) {
          System.out.println("ERROR: Wrong number of parameters: " +
              otherArgs.size() + " instead of 2.");
          return printUsage();
        }
        FileInputFormat.setInputPaths(job, otherArgs.get(0));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs.get(1)));
    
        if (sampler != null) {
          System.out.println("Sampling input to effect total-order sort...");
          job.setPartitionerClass(TotalOrderPartitioner.class);
          Path inputDir = FileInputFormat.getInputPaths(job)[0];
          inputDir = inputDir.makeQualified(inputDir.getFileSystem(conf));
          Path partitionFile = new Path(inputDir, "_sortPartitioning");
          TotalOrderPartitioner.setPartitionFile(conf, partitionFile);
          InputSampler.<K,V>writePartitionFile(job, sampler);
          URI partitionUri = new URI(partitionFile.toString() +
                                     "#" + "_sortPartitioning");
          DistributedCache.addCacheFile(partitionUri, conf);
        }
    
        System.out.println("Running on " +
            cluster.getTaskTrackers() +
            " nodes to sort from " +
            FileInputFormat.getInputPaths(job)[0] + " into " +
            FileOutputFormat.getOutputPath(job) +
            " with " + num_reduces + " reduces.");
        Date startTime = new Date();
        System.out.println("Job started: " + startTime);
        int ret = job.waitForCompletion(true) ? 0 : 1;
        Date end_time = new Date();
        System.out.println("Job ended: " + end_time);
        System.out.println("The job took " +
            (end_time.getTime() - startTime.getTime()) /1000 + " seconds.");
        return ret;
      }
    
    
    
      public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Configuration(), new Sort(), args);
        System.exit(res);
      }
    
      /**
       * Get the last job that was run using this instance.
       * @return the results of the last job that was run
       */
      public Job getResult() {
        return job;
      }
    }

    看了源码的第一印象就是,我啥时候写MapReduce也这么规范,这么屌......

  • 相关阅读:
    java基础入门-arraylist存储开销
    java基础入门-iterator迭代器与集合下标的使用
    java基础入门-泛型(1)-为什么需要使用泛型?
    vue路由懒加载
    js防抖和节流
    vue 生命周期函数详解
    createElement 函数
    vue中Runtime-Compiler和Runtime-only的区别
    箭头函数以及this指向问题
    webpackES6语法转ES5语法
  • 原文地址:https://www.cnblogs.com/tuhooo/p/7844997.html
Copyright © 2011-2022 走看看