zoukankan      html  css  js  c++  java
  • PatchMatch Stereo

    Tips

    MVS: Multi-View Stereo

    Abstract

    • 思路:一般的局部立体方法是一个具有整形数值视察(disparity)的支持镜头进行匹配,其中有一个隐藏的假设:再支持区域的像素中具有恒定的视差。这个假设在倾斜的表面是不成立的。
    • 每个像素有一个单独的3D平面。
    • 除了PatchMatch的空间传播方法外,还有
      • 在立体中左右视图传播的图传播。
      • 时间传播,从视频的前和连续帧中传播平面。
    • 倾斜支持窗口可以用来计算全球立体方法的代价,允许明确的遮挡处理,可以处理大的非纹理区域。
    • 重构了高度倾斜的表面,并以亚像素精度实现了视差细节。

    Introduction

    原来局部立体匹配中,恒定时差不太可能发生的原因有二:

    • 支持的窗口包含与中心像素位于不同表面的像素。
    • 窗口捕捉到倾斜的表面,不是fronto-parallel。
    • [ ] ??? 这篇论文提出了一种基于PatchMatch的算法,有效地解决了在每个像素点找到一个“好的”倾斜支持平面的问题。与其他局部算法相比,算法没有构建完整的cost-volume,这在本论文算法中是不可能的,因为标签空间包含了无限个3D平面。相反,算法巧妙地遍历了其中的一部分。这使得一次优化成为可能,平面以及分配给平面的像素能够联合估计,这有效地绕过了错失正确平面的问题。PatchMatch本身就是一个近似稠密的最近邻算法。这篇论文利用随机搜索和传播的PatchMatch思想来寻找平面极线上的最近邻。这使得能够处理倾斜的表面和亚像素精度。

    Algorithm

    对于两张图像中的每个像素(p), 寻找一个平面(f_p),视差公式:

    [d_p = a_{f_p}p_x+b_{f_p}p_y+c_{f_p} (1) ]

    总的优化函数如下:

    [f_p = argmin_{finxi}m(p,f)(2) ]

    其中(xi)表示所有可能的平面,它的大小是无限的。

    代价公式如下:

    [m(p,f)=sum_{qin W_p}w(p,q) ho(q, q-d_p) ]

    其中(W_p)表示以像素(p)作为中心的方形窗口。但是与现有方法不同,(W_p)不再是2D的,而是3D的。权重函数(w(p,q))用来解决边缘育肥问题,并且实施自适应支持权重的思想,它通过像素之间的颜色来计算他们之间的相似性:

    [w(p,q) = e^{-||I_p-I_q||} ]

    其中,(||I_p-I_q||)计算像素(p)(q)在RGB空间的L1距离。

    现在来关注( ho(q,q'))部分,首先根据平面(f)计算像素(q)的视差,并且从(q)的x坐标减去这个视差得到在另一张图上的匹配点(q'),函数( ho(q,q'))用来计算像素(q)(q')之间的不相似性:

    [ ho(q,q')=(1-alpha)min(||I_q-I_{q'}||, au_{col})+alpha min(||-||, au_{grad}) ]

    2.2 PatchMatch计算视差

    随机初始化

    给两张图像的一个像素的一个随即平面。

    1. Somehow,得到一个随机平面的一个点(P(x_0, y_0, z_0))
    2. 然后计算平面法向量(n=(n_x, n_y, n_z))
      • (a_f=-n_x/n_z)
      • (b_f=-n_y/n_z)
      • (c_f=(n_xx_0 + n_yy_0+n_zz_0)/n_z)

    迭代和传播

    四种步骤。(1). spatial propagation, (2). view propagation, (3). temporal propagation, (4). plane refinement。

    首先处理左图的所有像素,然后处理右图的所有像素。

    • 在奇数次迭代中,从左上角的像素开始,逐行遍历。
    • 在偶数次迭代中,颠倒顺序。

    简单三步骤

    • 初始化:两张图A和B,将A图中的每一个像素,随机赋予一个偏移量,在B图中找到一个与之对应。

    这里写图片描述

    • 传播:每个像素检查来自相邻块的便宜是否提供了更好的匹配,如果是则采用邻居的偏移量。

    这里写图片描述

    • 搜索:每一个像素点在以现在的偏移量位中心的同心圆内部,找到一个更加匹配的偏移量。

    这里写图片描述

    搜索的半径以图片为尺寸,然后以1/2的收敛速度减少,直到半径为1.

  • 相关阅读:
    【目录】循序渐进学.Net Core Web Api开发系列
    UML各种图总结-精华
    UML各种线的含义
    最新10大Python面试常问的问题,60%的人都不会
    Java—线程池ThreadPoolExecutor案例详解,高薪必备
    HashMap 的 7 种遍历方式与性能分析,高薪必学
    DelayQueue核心源码解析,Java面试必学
    Spring源码-循环依赖,Java架构师必学
    JAVA编程思想,去掉别扭的if,自注册策略模式优雅满足开闭原则,80%的人都不知道
    用Python实现植物大战僵尸游戏,很酷
  • 原文地址:https://www.cnblogs.com/tweed/p/10891103.html
Copyright © 2011-2022 走看看