zoukankan      html  css  js  c++  java
  • HDU 6156 Palindrome Function 数位DP

      题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6156

      题目描述: 求L~R所有的数的l~r进制的f(x), f(x) = 当前进制 如果回文串, f(x) = 1 其他情况

      解题思路: 数位DP, 统计个数 , 需要作出改变的就是进制和回文

      代码: 

    #include <iostream>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cstring>
    #include <iterator>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <deque>
    #include <map>
    #define lson l, m, rt<<1
    #define rson m+1, r, rt<<1|1
    #define mem0(a) memset(a,0,sizeof(a))
    #define mem1(a) memset(a,-1,sizeof(a))
    #define meminf(a) memset(a,0x3f,sizeof(a))
    #define fi(n) for(i=0;i<n;i++)
    #define fj(m) for(j=0;j<m;j++)
    #define sca(x) scanf("%d",&x)
    #define scalld(x) scanf("%I64d",&x)
    #define print(x) printf("%d
    ",x)
    #define printlld(x) printf("%I64d
    ",x)
    #define d printf("=======
    ")
    
    typedef long long LL;
    using namespace std;
    const int maxn = 100;
    
    int digit[maxn];
    int temp[maxn];
    
    LL dp[40][maxn][maxn][5]; // dp[i][j][p][q] i 进制第j位是p完成还是没完成
    
    LL dfs( int k, int pos, int len, int status, int limit ) {
        if( pos < 0 ) {
            if( status ) return k;
            else return 1;
        }
        if( !limit && dp[k][pos][len][status] != -1 ) {
            return dp[k][pos][len][status];
        }
        int end = limit ? digit[pos] : k-1;
        LL ret = 0;
        for( int i = 0; i <= end; i++ ) {
            temp[pos] = i;
            if( i == 0 && len == pos) {
                ret += dfs( k, pos-1, len-1, status, limit && (i==end));
            }
            else if( status && pos < (len+1)/2 ) {
                ret += dfs( k, pos-1, len, i == temp[len-pos], limit&&(i==end) );
            }
            else {
                ret += dfs( k, pos-1, len, status, limit&&(i==end) );
            }
        }
        if( !limit ) dp[k][pos][len][status] = ret;
        return ret;
    }
    
    
    LL fun( int num, int k ) {
        if( num == 0 ) return k;
        int cnt = 0;
        while( num ) {
            digit[cnt++] = num % k;
            num /= k;
        }
        return dfs( k, cnt-1, cnt-1, 1, 1 );
    }
    
    int main() {
        int t;
    //    cin >> t;
        sca(t);
        int cases = 1;
        mem1(dp);
        while( t-- ) {
            LL res = 0;
            int L, R, l, r;
    //        cin >> L >> R >> l >> r;
            sca(L), sca(R), sca(l), sca(r);
            for( int i = l; i <= r; i++ ) {
                res += fun(R, i) - fun(L-1, i);
            }
            printf( "Case #%d: %lld
    ", cases++, res );
    //        cout << "Case: #" << cases++ << ": " << res << endl;
        }
        return 0;
    }
    View Code

      思考: 自己一开始没想到数位DP, 赛后补题的时候写的时候也有很多错误, 有好多细节自己想不到, 是真的菜, 现在把代码删了, 重新写一遍, 还有好多好多地方是需要努力的啊

    http://acm.hdu.edu.cn/showproblem.php?pid=6156

    转载于:https://www.cnblogs.com/FriskyPuppy/p/7398339.html

  • 相关阅读:
    20201031
    20201028
    20201026
    20201027
    20201020
    ReentrantReadWriteLock原理分析
    java中Thread源码介绍
    CountDownLatch原理分析
    Semaphore原理分析
    AQS-共享模式分析
  • 原文地址:https://www.cnblogs.com/twodog/p/12139593.html
Copyright © 2011-2022 走看看