zoukankan      html  css  js  c++  java
  • MVCC 能解决幻读吗?

    MySQL通过MVCC(解决读写并发问题)和间隙锁(解决写写并发问题)来解决幻读

    MySQL InnoDB事务的隔离级别有四级,默认是“可重复读”(REPEATABLE READ)。

    • 未提交读(READ UNCOMMITTED)。另一个事务修改了数据,但尚未提交,而本事务中的SELECT会读到这些未被提交的数据(脏读)。
    • 提交读(READ COMMITTED)。本事务读取到的是最新的数据(其他事务提交后的)。问题是,在同一个事务里,前后两次相同的SELECT会读到不同的结果(不重复读)。
    • 可重复读(REPEATABLE READ)。在同一个事务里,SELECT的结果是事务开始时时间点的状态,因此,同样的SELECT操作读到的结果会是一致的。但是,会有幻读现象(稍后解释)。
    • 串行化(SERIALIZABLE)。读操作会隐式获取共享锁,可以保证不同事务间的互斥。

    四个级别逐渐增强,每个级别解决一个问题。

    • 脏读,最容易理解。另一个事务修改了数据,但尚未提交,而本事务中的SELECT会读到这些未被提交的数据。
    • 不重复读。解决了脏读后,会遇到,同一个事务执行过程中,另外一个事务提交了新数据,因此本事务先后两次读到的数据结果会不一致。
    • 幻读。解决了不重复读,保证了同一个事务里,查询的结果都是事务开始时的状态(一致性)。但是,如果另一个事务同时提交了新数据,本事务再更新时,就会“惊奇的”发现了这些新数据,貌似之前读到的数据是“鬼影”一样的幻觉。

    ------

    一些文章写到InnoDB的可重复读避免了“幻读”(phantom read),这个说法并不准确。

    做个试验:(以下所有试验要注意存储引擎和隔离级别)

    mysql> show create table t_bitflyG;
    CREATE TABLE `t_bitfly` (
    `id` bigint(20) NOT NULL default '0',
    `value` varchar(32) default NULL,
    PRIMARY KEY (`id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=gbk

    mysql> select @@global.tx_isolation, @@tx_isolation;
    +-----------------------+-----------------+
    | @@global.tx_isolation | @@tx_isolation  |
    +-----------------------+-----------------+
    | REPEATABLE-READ       | REPEATABLE-READ |
    +-----------------------+-----------------+

    试验一:

    t Session A                   Session B
    |
    | START TRANSACTION;          START TRANSACTION;
    |
    | SELECT * FROM t_bitfly;
    | empty set
    |                             INSERT INTO t_bitfly
    |                             VALUES (1, 'a');
    |
    | SELECT * FROM t_bitfly;
    | empty set
    |                             COMMIT;
    |
    | SELECT * FROM t_bitfly;
    | empty set
    |
    | INSERT INTO t_bitfly VALUES (1, 'a');
    | ERROR 1062 (23000):
    | Duplicate entry '1' for key 1
    v (shit, 刚刚明明告诉我没有这条记录的)

    没有出现幻读,因为是快照读,MVCC解决了快照读的幻读问题

    试验二:

    t Session A                  Session B
    |
    | START TRANSACTION;         START TRANSACTION;
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |                            INSERT INTO t_bitfly
    |                            VALUES (2, 'b');
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |                            COMMIT;
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |
    | UPDATE t_bitfly SET value='z';
    | Rows matched: 2  Changed: 2  Warnings: 0
    | (怎么多出来一行)
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | z     |
    | |    2 | z     |
    | +------+-------+
    |
    v

    本事务中第一次读取出一行,做了一次更新后,另一个事务里提交的数据就出现了。也可以看做是一种幻读。

    ------

    那么,InnoDB指出的可以避免幻读是怎么回事呢?

    http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html

    By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoiding the Phantom Problem Using Next-Key Locking”).

    默认情况下,InnoDB在REPEATABLE READ事务隔离级别运行,并禁用innodb_locks_unsafe_for_binlog系统变量。 在这种情况下,InnoDB使用下一键锁进行搜索和索引扫描,从而防止幻像行

    理解是,当隔离级别是可重复读,且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-key locks可以避免幻读。

    关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks,还是说需要应用自己来加锁呢?如果单看这一句,可能会以为InnoDB对普通的查询也加了锁,如果是,那和序列化(SERIALIZABLE)的区别又在哪里呢?

    MySQL manual里还有一段:

    13.2.8.5. Avoiding the Phantom Problem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)

    To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking with gap locking.

    You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the nonexistence of something in your table.

    我的理解是说,InnoDB提供了next-key locks,但需要应用程序自己去加锁。(next-key locks就是Record lock记录锁(行锁)和gap lock间隙锁的结合,即除了锁住记录本身,还要再锁住索引之间的间隙)manual里提供一个例子:

    SELECT * FROM child WHERE id > 100 FOR UPDATE;

    这样,InnoDB会给id大于100的行(假如child表里有一行id为102),以及100-102,102+的gap都加上锁。

    可以使用show innodb status来查看是否给表加上了锁。

    再看一个实验,要注意,表t_bitfly里的id为主键字段。实验三:

    t Session A                 Session B
    |
    | START TRANSACTION;        START TRANSACTION;
    |
    | SELECT * FROM t_bitfly
    | WHERE id<=1
    | FOR UPDATE;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |                           INSERT INTO t_bitfly
    |                           VALUES (2, 'b');
    |                           Query OK, 1 row affected
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |                           INSERT INTO t_bitfly
    |                           VALUES (0, '0');
    |                           (waiting for lock ...
    |                           then timeout)
    |                           ERROR 1205 (HY000):
    |                           Lock wait timeout exceeded;
    |                           try restarting transaction
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    |                           COMMIT;
    |
    | SELECT * FROM t_bitfly;
    | +------+-------+
    | | id   | value |
    | +------+-------+
    | |    1 | a     |
    | +------+-------+
    v

    使用for update,是当前读,用id<=1加的锁,只锁住了id<=1的范围,可以成功添加id为2的记录,添加id为0的记录时就会等待锁的释放

    MySQL manual里对可重复读里的锁的详细解释:

    http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read

    For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE),UPDATE, and DELETE statements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition. For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it. For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by other sessions into the gaps covered by the range.

    ------

    一致性读和提交读(可重复读和读已提交),先看实验,实验四:

    t Session A                      Session B
    |
    | START TRANSACTION;             START TRANSACTION;
    |
    | SELECT * FROM t_bitfly;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | +----+-------+
    |                                INSERT INTO t_bitfly
    |                                VALUES (2, 'b');
    |                                COMMIT;
    |
    | SELECT * FROM t_bitfly;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | +----+-------+
    |
    | SELECT * FROM t_bitfly LOCK IN SHARE MODE;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | |  2 | b     |
    | +----+-------+
    |
    | SELECT * FROM t_bitfly FOR UPDATE;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | |  2 | b     |
    | +----+-------+
    |
    | SELECT * FROM t_bitfly;
    | +----+-------+
    | | id | value |
    | +----+-------+
    | |  1 | a     |
    | +----+-------+
    v

    如果使用普通的读,会得到一致性的结果,如果使用了加锁的读,就会读到“最新的”“提交”读的结果。

    (我的感觉是,使用for update当前读,读取最新数据并且加了锁,事务2再insert会锁住,这样间隙锁就解决了幻读。但是先快照读,事务2再insert,再for update当前读会读到最新数据,出现了幻读)

    本身,可重复读和提交读是矛盾的。在同一个事务里,如果保证了可重复读,就会看不到其他事务的提交,违背了提交读;如果保证了提交读,就会导致前后两次读到的结果不一致,违背了可重复读。

    可以这么讲,InnoDB提供了这样的机制,在默认的可重复读的隔离级别里,可以使用加锁读去查询最新的数据。

    http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html

    If you want to see the “freshest” state of the database, you should use either the READ COMMITTED isolation level or a locking read:
    SELECT * FROM t_bitfly LOCK IN SHARE MODE;

    ------

    结论:MySQL InnoDB的可重复读并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-key locks。

    评论:

    kiddy2012

    博主你好,最近碰到问题,也专门看了下这块的知识。感觉理解跟你还是有一些偏差的,所谓幻读,是读取的其他事务提交的幻行,导致数据出错。而上述例子确实避免了这种幻行的读取。 
    ·1、第一个例子,事务b提交以后,事务a没有读取到(没有出现幻读),至于插入失败,是因为主键不唯一,这个就算是可见也一定不会成功的。 
    ·2、第二个例子,查询并没有幻读,但是update之后出现了多余的数据,是因为update的时候,是会更新next-key的版本号的,如果update加入条件,只更新查询出来的id为1的数据,后续查询,还是查不到另外一条的(没有幻读,update更新了版本号,所以查询出来的数据是合法的) 
           后面的例子是你加锁的例子,没有问题。但是这样会大大的消耗了性能,其实你做的是SERIALIZABLE做的事情。 
           还有一点,你可能对next-key locks的理解有些偏差,所谓next-key locks并不是真的加锁,只是通过版本号,做了数据隔离,而版本号(当前版本,删除版本两个)是mysql的innodb自己维护的隐藏列。这种隔离是对查询的隔离,更新删除还有插入,都有自己的版本号维护,来保证查询的正确性。 

    链接: http://blog.sina.cn/dpool/blog/s/blog_499740cb0100ugs7.html?vt=4

    快照读的幻读-mvcc 解决
    当前读的幻读-gap 锁解决

    首先读分为:
    快照读
    select * from table where ?;

    当前读:特殊的读操作,插入/更新/删除操作,属于当前读,需要加锁。
    select * from table where ? lock in share mode;
    select * from table where ? for update;
    insert into table values (…);
    update table set ? where ?;
    delete from table where ?;

    对于快照读来说,幻读的解决是依赖mvcc解决。而对于当前读则依赖于gap-lock解决。
    ---------------------
    作者:impbb
    来源:CSDN
    原文:https://blog.csdn.net/qq_27007251/article/details/70016787
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    Go语言v1.8正式发布,有显著的性能提升和变化(go适合服务器编程、网络编程)
    NET生成二维码
    组合模式
    Spring MVC
    前端事件
    Play Framework + ReactiveMongo
    DDD领域驱动设计初探
    jsRender模板引擎
    C#分布式缓存Couchbase
    ABP
  • 原文地址:https://www.cnblogs.com/twoheads/p/10703023.html
Copyright © 2011-2022 走看看