zoukankan      html  css  js  c++  java
  • 原创:Spark中GraphX图运算pregel详解

    由于本人文字表达能力不足,还是多多以代码形式表述,首先展示测试代码,然后解释:

    package com.txq.spark.test

    import org.apache.spark.graphx.util.GraphGenerators
    import org.apache.spark.graphx._
    import org.apache.spark.rdd.RDD
    import org.apache.spark.{SparkConf, SparkContext, SparkException, graphx}

    import scala.reflect.ClassTag

    /**
    * spark GraphX 测试
    * @authorTongXueQiang
    */
    object test {

    System.setProperty("hadoop.home.dir","D://hadoop-2.6.2");
    val conf = new SparkConf().setMaster("local").setAppName("testRDDMethod");
    val sc = new SparkContext(conf);

    def main(args: Array[String]): Unit = {
    /*
    val rdd = sc.textFile("hdfs://spark:9000/user/spark/data/SogouQ.sample");//搜狗搜索日志解析
    val rdd1 = rdd.map(_.split(" ")).map(line=>line(3)).map(_.split(" "));
    println("共有"+rdd1.count+"行");
    val rdd2 = rdd1.filter(_(0).toInt == 1).filter(_(1).toInt == 1);
    println("搜索结果和点击率均排第一的共有"+rdd2.count+"行");
    val users:RDD[(VertexId,(String,String))] = sc.parallelize(Array((3L,("rxin","student")),(7L,("jgonzal","postdoc")),(5L,("franklin","prof")),(2L,("istoica","prof"))));
    val relationships:RDD[Edge[String]] = sc.parallelize(Array(Edge(3L,7L,"collab"),Edge(5L,3L,"advisor"),Edge(2L,5L,"colleague"),Edge(5L,7L,"pi")));
    val defaultUser = ("jone","Missing");
    val graph = Graph(users,relationships,defaultUser);
    val result = graph.vertices.filter{case(id,(name,pos)) => pos == "prof"}.count();
    println("职位名称为prof的个数有:" + result + "个");
    println(graph.edges.filter(e => e.srcId > e.dstId).count());
    graph.triplets.collect().foreach(println)
    graph.edges.collect().foreach(println)*/
    /*
    val graph:Graph[Double,Int] = GraphGenerators.logNormalGraph(sc,numVertices = 100).mapVertices((id,_) => id.toDouble)
    println(graph);
    println(graph.vertices)*/

    /*
    val oderFollowers:VertexRDD[(Int,Double)] = graph.mapReduceTriplets[(Int,Double)](
    triplet =>{
    if(triplet.srcAttr > triplet.dstAttr){
    Iterator((triplet.dstId,(1,triplet.srcAttr)));
    } else {
    Iterator.empty
    }
    },
    (a,b) =>(a._1 + b._1,a._2 + b._2)
    )
    val avgAgeOfolderFollower:VertexRDD[Double] = oderFollowers.mapValues((id,value) => {
    value match{
    case (count,totalAge) => totalAge / count
    }
    })

    avgAgeOfolderFollower.collect().foreach(println)*/
        //收集邻居节点,后面有自定义方法
    //collectNeighborIds(EdgeDirection.In,graph).foreach(line => {print(line._1+":"); for (elem <- line._2) {print(elem + " ")};println;});
       //以Google的网页链接文件(后面由下载地址)为例,演示pregel方法,找出从v0网站出发,得到经过的步数最少的链接网站,类似于附近地图最短路径算法
    val graph:Graph[Double,Double] = GraphLoader.edgeListFile(sc,"hdfs://spark/user/spark/data/web-Google.txt",numEdgePartitions = 4).mapVertices((id,_) => id.toDouble).mapEdges(edge => edge.attr.toDouble);
    val sourceId:VertexId = 0;//定义源网页Id
    val g:Graph[Double,Double] = graph.mapVertices((id,attr) => if(id == 0) 0.0 else Double.PositiveInfinity)
    //pregel底层调用GraphOps的mapReduceTriplets方法,一会儿解释源代码
    val result = pregel[Double,Double,Double](g,Double.PositiveInfinity)(
    (id,vd,newVd) => math.min(vd,newVd),//这个方法的作用是更新节点VertexId的属性值为新值,以利于innerJoin操作
    triplets => {//map函数
    if(triplets.srcAttr + triplets.attr < triplets.dstAttr){
    Iterator((triplets.dstId,triplets.srcAttr + triplets.attr))
    } else {
    Iterator.empty
    }
    },
    (a,b) => math.min(a,b)//reduce函数
    )
       //输出结果,注意pregel返回的是更新VertexId属性的graph,而不是VertexRDD[(VertexId,VD)]
    print("最短节点:"+result.vertices.filter(_._1 != 0).reduce(min));//注意过滤掉源节点
    }
       //找出路径最短的点
    def min(a:(VertexId,Double),b:(VertexId,Double)):(VertexId,Double) = {
    if(a._2 < b._2) a else b
    }
    /**
    * 自定义收集VertexId的neighborIds
    * @author TongXueQiang
    */
    def collectNeighborIds[T,U](edgeDirection:EdgeDirection,graph:Graph[T,U])(implicit m:scala.reflect.ClassTag[T],n:scala.reflect.ClassTag[U]):VertexRDD[Array[VertexId]] = {
    val nbrs = graph.mapReduceTriplets[Array[VertexId]](
    //map函数
    edgeTriplets => {
    val msgTosrc = (edgeTriplets.srcId,Array(edgeTriplets.dstId));
    val msgTodst = (edgeTriplets.dstId,Array(edgeTriplets.srcId));
    edgeDirection match {
    case EdgeDirection.Either =>Iterator(msgTosrc,msgTodst)
    case EdgeDirection.Out => Iterator(msgTosrc)
    case EdgeDirection.In => Iterator(msgTodst)
    case EdgeDirection.Both => throw new SparkException("It doesn't make sense to collect neighbors without a " + "direction.(EdgeDirection.Both is not supported.use EdgeDirection.Either instead.)")
    }
    },_ ++ _)//reduce函数
    nbrs
    }

    /**
    * 自定义pregel函数
    * @param graph 图
    * @param initialMsg 返回的vertexId属性
    * @param maxInterations 迭代次数
    * @param activeDirection 边的方向
    * @param vprog 更新节点属性的函数,以利于innerJoin操作
    * @param sendMsg map函数,返回Iterator[A],一般A为Tuple2,其中id为接受消息方
    * @param mergeMsg reduce函数,一般为合并,或者取最小、最大值……操作
    * @tparam A 想要得到的VertexId属性
    * @tparam VD graph中vertices的属性
    * @tparam ED graph中的edge属性
    * @return 返回更新后的graph
    */
    def pregel[A:ClassTag,VD:ClassTag,ED:ClassTag](graph:Graph[VD,ED],initialMsg:A,maxInterations:Int = Int.MaxValue,activeDirection:EdgeDirection = EdgeDirection.Either)(
    vprog:(VertexId,VD,A) => VD,
    sendMsg:EdgeTriplet[VD,ED] =>Iterator[(VertexId,A)],
    mergeMsg:(A,A) => A)
    : Graph[VD,ED] = {
    Pregel0(graph,initialMsg,maxInterations,activeDirection)(vprog,sendMsg,mergeMsg)//调用apply方法
    }
     

     //此为节点内连接函数,返回VertexRDD
    def innerJoin[U:ClassTag,VD:ClassTag](table:RDD[(VertexId,U)])(mapFunc:(VertexId,VD,U) => VertexRDD[(VertexId,VD)]) = {
    val uf = (id: VertexId, data: VD, o: Option[U]) => {
    o match {
    case Some(u) => mapFunc(id, data, u)
    case None => data
    }
    }
    }
     //测试Option[T] def test():Unit = {
    val map = Map("a" -> "1","b" -> "2","c" -> "3");
    def show(value:Option[String]):String = {
    value match{
    case Some(x) => x
    case None => "no value found!"
    }
    }
    println(show(map.get("a")) == "1");
    }
    }

    下面重点研究Pregel,为了方便,自己重新定义了一个Pregel0

    package com.txq.spark.test

    import org.apache.spark.Logging
    import org.apache.spark.graphx.{EdgeDirection, EdgeTriplet, Graph, VertexId}
    import scala.reflect.ClassTag

    /**
    * 自定义Pregel object,处理思路:
    */
    object Pregel0 extends Logging {
    def apply[VD:ClassTag,ED:ClassTag,A:ClassTag]
    (graph:Graph[VD,ED],
    initialMsg:A,
    maxIterations:Int = Int.MaxValue,
    activeDirection:EdgeDirection = EdgeDirection.Either)
    (vprog:(VertexId,VD,A) => VD,
    sendMsg:EdgeTriplet[VD,ED] => Iterator[(VertexId,A)],
    mergeMsg:(A,A) => A)
    : Graph[VD,ED] =
    {
      //①对vertices进行更新操作
    var g = graph.mapVertices((vid,vdata) => vprog(vid,vdata,initialMsg)).cache();
    //②compute the messages,注意调用的是mapReduceTriplets方法,源代码:  

          def mapReduceTriplets[A](  

             map: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],  

             reduce: (A, A) => A),

             activeSetOpt: Option[(VertexRDD[_], EdgeDirection)] = None )  

        : VertexRDD[A]  



    var messages = g.mapReduceTriplets(sendMsg,mergeMsg);
    print("messages:"+messages.take(10).mkString(" "))
    var activeMessages = messages.count();
    //LOAD
    var prevG:Graph[VD,ED] = null
    var i = 0;
    while(activeMessages > 0 && i < maxIterations){
    //③Receive the messages.Vertices that didn't get any message do not appear in newVerts.
    //内联操作,返回的结果是VertexRDD,可以参看后面的调试信息
    val newVerts = g.vertices.innerJoin(messages)(vprog).cache();
    print("newVerts:"+newVerts.take(10).mkString(" "))
    //④update the graph with the new vertices.
    prevG = g;//先把旧的graph备份,以利于后面的graph更新和unpersist掉旧的graph
         //④外联操作,返回整个更新的graph
    g = g.outerJoinVertices(newVerts){(vid,old,newOpt) => newOpt.getOrElse(old)}//getOrElse方法,意味,如果newOpt存在,返回newOpt,不存在返回old
    print(g.vertices.take(10).mkString(" "))
    g.cache();//新的graph cache起来,下一次迭代使用

    val oldMessages = messages;//备份,同prevG = g操作一样
    //Send new messages.Vertices that didn't get any message do not appear in newVerts.so
    //don't send messages.We must cache messages.so it can be materialized on the next line.
    //allowing us to uncache the previous iteration.
        //⑤下一次迭代要发送的新的messages,先cache起来
    messages = g.mapReduceTriplets(sendMsg,mergeMsg,Some((newVerts,activeDirection))).cache()
    print("下一次迭代要发送的messages:"+messages.take(10).mkString(" "))
    activeMessages = messages.count();//⑥
    print("下一次迭代要发送的messages的个数:"+ activeMessages)//如果activeMessages==0,迭代结束
    logInfo("Pregel finished iteration" + i);
        //原来,旧的message和graph不可用了,unpersist掉
    oldMessages.unpersist(blocking= false);
    newVerts.unpersist(blocking=false)//unpersist之后,就不可用了
    prevG.unpersistVertices(blocking=false)
    prevG.edges.unpersist(blocking=false)
    i += 1;
    }
    g//返回最后的graph
    }

    }
    输出的调试信息:(距离v0节点最近的节点)
    第一次跌代:

    messages:(11342,1.0)
    (824020,1.0)
    (867923,1.0)
    (891835,1.0)
    newVerts:(11342,1.0)
    (824020,1.0)
    (867923,1.0)
    (891835,1.0)
    下一次迭代要发送的messages:(302284,2.0)
    (760842,2.0)
    (417728,2.0)
    (322178,2.0)
    (387543,2.0)
    (846213,2.0)
    (857527,2.0)
    (856657,2.0)
    (695578,2.0)
    (27469,2.0)
    下一次迭代要发送的messages的个数:29

    下一次迭代要发送的messages:(754862,3.0)
    (672426,3.0)
    (320258,3.0)
    (143557,3.0)
    (789355,3.0)
    (596104,3.0)
    (118398,3.0)
    (30115,3.0)
    下一次迭代要发送的messages的个数:141
    依次不断类推,直到activeMessages = 0跌代结束。

    上面需要cache的有:graph,messages,newVertis.spark中的创建RDD和transformation操作都是lazy的,存储的只是内存地址,并非真正创建对象,当进行action时,需要从头至尾运行一遍,所以cache之后,重复利用RDD,再次进行action时,速度会大大提升。unpersist之后,就不能用了,所以需要把旧的备份。

    一般情况使用mapReduceTriplets可以解决很多问题,为什么Spark GraphX会提供Pregel API?主要是为了更方便地去做迭代操作。因为在GraphX里面,Graph这张图并没有自动cache,而是手动cache。但是为了每次迭代更快,需要手动去做cache,每次迭代完就需要把没用的删除掉而把有用的保留,这比较难以控制。因为Graph中的点和边是分开进行Cache的,而Pregel能够帮助我们。例如,PangeRank就非常适合用Pregel来做。

    web-Google.txt.gz文件下载地址:http://snap.stanford.edu/data/web-Google.html

    佟氏出品,必属精品!专注spark GraphX、数据挖掘、机器学习的源代码和算法,扎扎实实,写好每一行代码!

  • 相关阅读:
    List of yellow pages
    Bing Beats Google for the Best Way to X-Ray Search LinkedIn
    Search Engine Hacking – Manual and Automation
    42 Bing Search Engine Hacks
    Bing Advanced Search Tricks You Should Know
    Advanced search keywords
    10 Advanced Bing Search Tricks You Should Know
    python判断list中是否包含某个元素
    Python性能优化的20条建议
    CheatEngine查看PE header
  • 原文地址:https://www.cnblogs.com/txq157/p/6005668.html
Copyright © 2011-2022 走看看