zoukankan      html  css  js  c++  java
  • 模板(出锅了望周知,感谢)

    顺序大致按照luogu模板题排列

    spfa判负环

    #include<cstdio>
    #include<queue>
    using namespace std;
    const int N = 2000+99;
    const int M = 3000+99;
    const int INF = 2147000047;
    
    int n, m, T;
    struct edge{
    	int y, nxt, val;
    }e[M<<1];
    int head[N], cnt;
    void add_edge(int x, int y, int val) {
    	e[++cnt].y = y;
    	e[cnt].val = val;
    	e[cnt].nxt = head[x];
    	head[x] = cnt;
    }
    
    int vis[N], dis[N], num[N];
    queue<int> q;
    int spfa() {
    	for(int i = 1; i <= n; i++) vis[i] = num[i] = 0, dis[i] = INF;
    	dis[1] = 0;
    	q.push(1);
    	vis[1] = 1;
    	while(!q.empty()) {
    		int now = q.front(); q.pop();
    		vis[now] = 0;
    		for(int i = head[now]; i; i = e[i].nxt) if(dis[e[i].y] > dis[now]+e[i].val){
    			dis[e[i].y] = dis[now] + e[i].val;
    			if(!vis[e[i].y]) {
    				q.push(e[i].y); vis[e[i].y] = 1;
    				if(++num[e[i].y] > n) return false;
    			}
    		}
    	}
    	return true;
    }
    
    void init() {
    	cnt = 0;
    	for(int i = 1; i <= n; i++) head[i] = 0;
    }
    
    int main() {
    	scanf("%d", &T);
    	while(T--) {
    		scanf("%d%d", &n, &m);
    		int x, y, val;
    		for(int i = 1; i <= m; i++) {
    			scanf("%d%d%d", &x, &y, &val);
    			add_edge(x, y, val);
    			if(val >= 0) add_edge(y, x, val);
    		}
    		if(!spfa()) printf("YE5
    ");
    		else printf("N0
    ");
    		init();
    	}
    }
    

    st

    #include<bits/stdc++.h>
    using namespace std;
    
    int n,m;
    int st[100000+99][17];
    
    int RMQ(int l, int r) {
    	int k = 0;
    	while(1<<(k+1) <= r-l+1) k++;
    	return max(st[l][k], st[r -(1<<k)+1][k]);
    }
    
    int main() {
    	scanf("%d%d",&n, &m);
    	for(int i = 1; i <= n; i++) scanf("%d",&st[i][0]);
    	for(int k = 1; (1<<k) <= n; k++) 
    		for(int i = 1; i + (1<<k) - 1 <= n; i++) 
    			st[i][k] = max(st[i][k-1], st[i+(1<<(k-1) )][k-1]);
    	int l,r;
    	for(int i = 1; i <= m; i++) {
    		scanf("%d%d", &l, &r);
    		printf("%d
    ",RMQ(l,r));
    	}
    }
    

    并查集

    写太丑了,不发了

    乘法逆元:线性求[1,n]的逆

    #include<cstdio>
    using namespace std;
    
    int n, p;
    int inv[3000000+9]; 
    
    int main() {
    	scanf("%d%d",&n, &p);
    	inv[1] = 1; printf("1
    ");
    	for(int i = 2; i <= n; i++) {
    		inv[i] = (long long)(p - p/i)*inv[p%i]%p;
    		printf("%d
    ", inv[i]);
    	}
    	return 0;
    }
    

    裴蜀定理

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    
    int gcd(int x, int y) {
    	return !y ? x : gcd(y, x%y);
    }
    
    int n, ans;
    int tmp;
    
    int main() {
    	scanf("%d", &n);
    	for(int i = 1; i <= n; i++) {
    		scanf("%d", &tmp);
    		if(tmp < 0) tmp = -tmp;
    		ans = gcd(ans, tmp);
    	}
    	printf("%d", ans);
    }
    

    欧拉定理:$ a^bmod m$

    #include<cstdio>
    #include <iostream>
    #include<cmath>
    using namespace std;
    //#define int long long
    
    int a, b, p;
    int read(int m) {
        char ch = getchar(); int x = 0;
        int tag = 0;
        while(ch<'0' || ch>'9') {ch = getchar();}
        while(ch>='0' && ch<= '9') {
            x = (x<<1)+(x<<3)+(ch^48);
            if(x >= m) {
                x %= m;//只需要最后加上phi(p)即可 
                tag = 1;
            }
            ch = getchar();
        }
        if(tag) x += m;//只有x>=phi时才x+=phi
        return x;
    }
    
    int ksm(int a, int b, int p) {
        int ans = 1;
        while(b) {
            if(b&1) ans = (long long)ans*a%p;
            b >>= 1;
            a = (long long)a*a%p;
        }
        return ans;//?
    }
    
    int el_phi(int x) {
        int m = sqrt(x+0.5), ans = x;
        for(int i = 2; i <= m; i++) if(x%i == 0) {
            ans = ans/i*(i-1);
            while(x%i == 0) x /= i;
        }
        if(x > 1) ans = ans/x*(x-1);
        return ans; 
    }
    
    signed main() {
    //  freopen("testdata (4).in", "r", stdin);
    //  freopen("testdata (4).out", "w", stdout);
        scanf("%d%d", &a, &p);
        a %= p;
        b = read(el_phi(p));
        printf("%d
    ", ksm(a, b, p));
    }
    

    线段树

    //出错了请告知,感谢!

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int N = 100000+99;
    
    struct tree{
    	long long add, sum, mx, set;
    }tr[N<<2];
    
    long long a[N];
    void pushup(int o) {
    	tr[o].mx = max(tr[o<<1].mx, tr[o<<1|1].mx);
    	tr[o].sum = tr[o<<1].sum + tr[o<<1|1].sum;
    }
    void build(int o, int l, int r) {
    	tr[o].add = 0; tr[o].set = -1;
    	if(l == r) {
    		tr[o].sum = tr[o].mx = a[l];
    		return ;
    	}
    	int mid = (l+r)>>1;
    	build(o<<1, l, mid);
    	build(o<<1|1, mid+1, r);
    	pushup(o);
    }
    void pushdown(int o, int l, int r) {
    	int mid = (l+r)>>1;
    	if(tr[o].set != -1) {
    		tr[o<<1].set = tr[o<<1|1].set = tr[o<<1].mx = tr[o<<1|1].mx = tr[o].set;
    		tr[o<<1].add = tr[o<<1|1].add = 0;
    		tr[o<<1].sum = tr[o].set*(mid-l+1); tr[o<<1|1].sum = tr[o].set*(r-mid);
    		tr[o].set = -1;
    	}
    	if(tr[o].add) {
    		tr[o<<1].add += tr[o].add; tr[o<<1|1].add += tr[o].add;
    		tr[o<<1].sum += tr[o].add*(mid-l+1); tr[o<<1|1].sum += tr[o].add*(r-mid);
    		tr[o<<1].mx += tr[o].add; tr[o<<1|1].mx += tr[o].add;
    		tr[o].add = 0;
    	}
    }
    void optadd(int o, int l, int r, int ql, int qr, long long k) {
    	if(ql <= l && r <= qr) {
    		tr[o].sum += k*(r-l+1);
    		tr[o].add += k;
    		tr[o].mx += k;
    		return ;
    	}
    	int mid = (l+r)>>1;
    	pushdown(o, l, r);
    	if(ql <= mid) optadd(o<<1, l, mid, ql, qr, k);
    	if(mid < qr) optadd(o<<1|1, mid+1, r, ql, qr, k);
    	pushup(o);
    }
    void optset(int o, int l, int r, int ql, int qr, long long k) {
    	if(ql <= l && r <= qr) {
    		tr[o].set = tr[o].mx = k;
    		tr[o].add = 0;
    		tr[o].sum = k*(r-l+1);
    		return ;
    	}
    	int mid = (l+r)>>1;
    	pushdown(o, l, r);
    	if(ql <= mid) optset(o<<1, l, mid, ql, qr, k);
    	if(mid < qr) optset(o<<1|1, mid+1, r, ql, qr, k);
    	pushup(o);
    }
    long long query_sum(int o, int l, int r, int ql, int qr) {
    	if(ql <= l && r <= qr) return tr[o].sum;
    	int mid = (l+r)>>1;
    	pushdown(o, l, r);
    	long long ans = 0;
    	if(ql <= mid) ans += query_sum(o<<1, l, mid, ql, qr);
    	if(mid < qr) ans += query_sum(o<<1|1, mid+1, r, ql, qr);
    	return ans;
    }
    long long query_mx(int o, int l, int r, int ql, int qr) {
    	if(ql <= l && r <= qr) return tr[o].mx;
    	int mid = (l+r)>>1;
    	pushdown(o, l, r);
    	long long mx = -2147000047;
    	if(ql <= mid) mx = max(mx, query_mx(o<<1, l, mid, ql, qr));
    	if(mid < qr) mx = max(mx, query_mx(o<<1|1, mid+1, r, ql, qr));
    	return mx;
    }
    
    int n, m;
    
    int main() {
    	scanf("%d%d", &n, &m);
    	for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
    	build(1, 1, n);
    	int cmd, x, y;
    	long long k;
    	for(int i = 1; i <= m; i++) {
    		scanf("%d", &cmd);
    		if(cmd == 1) {
    			scanf("%d%d%lld", &x, &y, &k);
    			optadd(1, 1, n, x, y, k);
    		}else {
    			scanf("%d%d", &x, &y);
    			printf("%lld
    ", query_sum(1, 1, n, x, y));
    		}
    	}
    }
    

    模板二不想打了2333...

    树链剖分

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int N = 100000+99;
    
    int n, m, s, p;
    struct node{
    	int dep, size, fa, son, tp, in, out;
    }a[N];
    
    struct edge{
    	int y, nxt;
    }e[N<<1];
    int head[N], cnt;
    void add_edge(int x, int y) {
    	e[++cnt].y = y;
    	e[cnt].nxt = head[x];
    	head[x] = cnt;
    }
    
    void dfs1(int x, int fa) {
    	a[x].dep = a[fa].dep + 1;
    	a[x].size = 1;
    	a[x].fa = fa;
    	for(int i = head[x]; i; i = e[i].nxt) if(e[i].y != fa) {
    		dfs1(e[i].y, x);
    		a[x].size += a[e[i].y].size;
    		a[x].son = a[a[x].son].size > a[e[i].y].size ? a[x].son : e[i].y;
    	}
    }
    int _clock, pos[N], b[N];
    void dfs2(int x, int tp) {
    	a[x].tp = tp;
    	a[x].in = ++_clock;
    	pos[_clock] = b[x];
    	if(a[x].son) dfs2(a[x].son, tp);
    	for(int i = head[x]; i; i = e[i].nxt) if(e[i].y != a[x].fa && e[i].y != a[x].son) 
    		dfs2(e[i].y, e[i].y);
    	a[x].out = _clock;
    }
    
    struct tree{
    	int sum, add;
    }tr[N<<2];
    void pushup(int o) {tr[o].sum = (tr[o<<1].sum + tr[o<<1|1].sum)%p;}
    void build(int o, int l, int r) {
    	tr[o].add = 0;
    	if(l == r) {
    		tr[o].sum = pos[l]%p;
    		return ;
    	}
    	int mid = (l+r)>>1;
    	build(o<<1, l, mid);
    	build(o<<1|1, mid+1, r);
    	pushup(o);
    }
    void pushdown(int o, int l, int r) {
    	if(!tr[o].add) return ;
    	tr[o<<1].add = (tr[o<<1].add + tr[o].add)%p; 
    	tr[o<<1|1].add = (tr[o<<1|1].add + tr[o].add)%p;
    	int mid = (l+r)>>1;
    	tr[o<<1].sum = (tr[o<<1].sum + tr[o].add*(mid-l+1) )%p; 
    	tr[o<<1|1].sum = (tr[o<<1|1].sum + tr[o].add*(r-mid) )%p;
    	tr[o].add = 0;
    }
    void optadd(int o, int l, int r, int ql, int qr, int k) {
    	if(ql <= l && r <= qr) {
    		tr[o].add = (tr[o].add + k)%p;
    		tr[o].sum = (tr[o].sum + k*(r-l+1))%p;
    		return ;
    	}
    	int mid = (l+r)>>1;
    	pushdown(o, l, r);
    	if(ql <= mid) optadd(o<<1, l, mid, ql, qr, k);
    	if(mid < qr) optadd(o<<1|1, mid+1, r, ql, qr, k);
    	pushup(o);
    }
    int query(int o, int l, int r, int ql, int qr) {
    	if(ql <= l && r <= qr) return tr[o].sum;
    	int mid = (l+r)>>1;
    	pushdown(o, l, r);
    	int ans = 0;
    	if(ql <= mid) ans = (ans + query(o<<1, l, mid, ql, qr))%p;
    	if(mid < qr) ans = (ans + query(o<<1|1, mid+1, r, ql, qr))%p;
    	return ans;
    }
    
    void ttt_optadd(int x, int y, int k) {
    	while(a[x].tp != a[y].tp) {
    		if(a[a[x].tp].dep < a[a[y].tp].dep) swap(x, y);
    		optadd(1, 1, _clock, a[a[x].tp].in, a[x].in, k);
    		x = a[a[x].tp].fa;
    	}
    	if(a[x].dep > a[y].dep) swap(x, y);
    	optadd(1, 1, _clock, a[x].in, a[y].in, k);
    }
    int ttt_query(int x, int y) {
    	int ans = 0;
    	while(a[x].tp != a[y].tp) {
    		if(a[a[x].tp].dep < a[a[y].tp].dep) swap(x, y);
    		ans = (ans + query(1, 1, _clock, a[a[x].tp].in, a[x].in))%p;
    		x = a[a[x].tp].fa;
    	}
    	if(a[x].dep > a[y].dep) swap(x, y);
    	ans = (ans + query(1, 1, _clock, a[x].in, a[y].in))%p;
    	return ans;
    }
    int main() {
    //	freopen("testdata.in", "r", stdin);
    	scanf("%d%d%d%d", &n, &m, &s, &p);
    	for(int i = 1; i <= n; i++) scanf("%d", &b[i]);
    	int x, y;
    	for(int i = 1; i < n; i++) {
    		scanf("%d%d", &x, &y);
    		add_edge(x, y);
    		add_edge(y, x);
    	}
    	dfs1(s, 0);
    	dfs2(s, s);
    	build(1, 1, _clock);
    	int cmd, z;
    	for(int i = 1; i <= m; i++) {
    		scanf("%d", &cmd);
    		if(cmd == 1) {
    			scanf("%d%d%d",&x, &y, &z);
    			ttt_optadd(x, y, z);
    		}else if(cmd == 2) {
    			scanf("%d%d",&x, &y);
    			printf("%d
    ", ttt_query(x, y));
    		}else if(cmd == 3) {
    			scanf("%d%d",&x, &z);
    			optadd(1, 1, _clock, a[x].in, a[x].out, z);
    		}else {
    			scanf("%d", &x);
    			printf("%d
    ", query(1, 1, _clock, a[x].in, a[x].out));
    		}
    	}
    }
    

    树状数组

    #include<cstdio>
    #define lowbit(x) (x & -x)
    #define MAX 11111
    int n,m;
    int t[MAX],a[MAX];//t为树状数组
    
    void add(int x, int k) {//单点修改(向树上走)
        for(int i = x; i <= n; i += lowbit(i)) {
            t[i] += k;
        }
    }
    
    int query(int x) {//区间查询(在树下向前推进)//求的是前缀和
        int sum = 0;
        for(int i = x; i; i -= lowbit(i)) {
            sum += t[i];
        }
        return sum;
    }
    
    void lineplus(const int & l , const int &r, const int &k) {
        add(l , k);
        add(r + 1 , -k);
    } //区间修改 & 单点查询 //将区间l~~r的值加k , 要在差分数组中做 ,此时a为差分数组 
    
    int main() {
        scanf("%d%d",&n,&m);
        for(int i = 1; i <= n; i++) {
            scanf("%d",&a[i]);
            add(i , a[i]);
            //add(i, a[i] - a[i-1]) //差分 
        }
        int x,y;
        for(int i = 1; i <= m; i++) {
            scanf("%d%d",&x,&y);
            printf("%d
    ",query(y) - query(x - 1));//求的是区间和(x~~y)
        }
    /*  int k;
        scanf("%d%d%d",&x,&y,&k);
        lineplus(x,y,k);//x~~y区间加k
        
        scanf("%d",&x) 
        printf("%d",queue(x) );//查询单点x //差分得出的t的前缀和 
    */
    }
    

    luogu乘法逆元2(应该不算模板)

    #include<cstdio>
    using namespace std;//5000009
    #pragma GCC optimize(3,"Ofast","inline")
    inline int read() {
    	char ch = getchar(); int x = 0;
    	while(ch<'0' || ch>'9') {ch = getchar();}
    	while(ch>='0' && ch<='9') {x = (x<<1)+(x<<3)+(ch^48); ch = getchar();}
    	return x;
    }
    
    int n, p, k;
    int qzj[5000009], hzj[5000009], a[5000009];
    
    void exgcd(int a, int b, int& x, int& y) {
    	if(!b) {
    		x = 1;
    		y = 0;
    	}
    	else exgcd(b, a%b, y, x), y -= (a/b)*x;
    }
    
    int main() {
    //	freopen("testdata (4).in", "r", stdin);
    //	freopen("testdata (4).out", "w", stdout);
    	n = read(), p = read(), k = read();
    	qzj[0] = 1;//27行,34行有用 
    	for(int i = 1; i <= n; i++) {
    		a[i] = read();
    		qzj[i] = 1ll*qzj[i-1]*a[i]%p;
    	}
    	int y;
    	exgcd(qzj[n], p, hzj[n+1], y);
    	for(int i = n; i >= 1; i--) hzj[i] = 1ll*hzj[i+1]*a[i]%p;//hzj[n] = a_{1}^{-1}*...*a_{n-1}^{-1}  
    	int ans = 0, tk = k;//tk累乘 
    	for(int i = 1; i <= n; i++) {
    		ans = (ans+(qzj[i-1]*1ll*hzj[i+1]%p)*tk)%p;//里面的会溢出!! 
    		tk = tk*1ll*k%p;
    	}
    	if(ans < 0) ans = (ans+p)%p;//ans已经是p以内的了  
    	printf("%d
    ", ans);
    	return 0;
    }
    

    线性筛素数

    欧拉筛:

    #include<cstdio>
    using namespace std;
    const int N = 10000000+9;
    
    int not_prime[N] = {1, 1};
    int prime[N], tot;
    int n, m;
    
    void L_S(){
            phi[1] = 1;
    	for(int i = 2; i <= n; i++) {
    		if(!not_prime[i]) 
    			prime[++tot] = i;
    		for(int j = 1; j <= tot && i*prime[j] <= n; j++) {
    			not_prime[i*prime[j]] = 1;
    			if(!( i%prime[j]) ) break;
    		}
    	}	
    }
    
    int main() {
    	scanf("%d%d", &n, &m);
    	L_S();
    	int x;
    	for(int i = 1; i <= m; i++) {
    		scanf("%d", &x);
    		if(not_prime[x]) printf("No
    ");
    		else printf("Yes
    ");
    	}
    }
    

    埃筛:

    #include<cstdio>
    #include<cmath>
    using namespace std; 
    #define MAXN 10000000+99
    int n,m;
    int isp[MAXN];
    
    int main() {
    	scanf("%d%d",&n,&m);
    //	for(int i = 2; i <= n; i++) 
    //		for(int j = i*i; j <= n; j+=i) isp[j] = 1;
    	int tmp = sqrt(n+0.5);//说是解决精度问题,不懂... 
    	for(int i = 2; i <= tmp; i++) if(!isp[i]) //i*i<n //1看题目考虑 
    		for(int j = i*i; j <= n; j+=i) {//没有必要从j*2, 因为在i=2的时候已经被筛掉了 
    			isp[j] = 1;
    		}
    	
    	int x;
    	for(int i = 1; i <= m; i++) {
    		scanf("%d",&x);
    		if(x == 1) {
    			printf("No
    ");
    			continue;
    		}
    		if(isp[x] == 0) printf("Yes
    ");
    		else printf("No
    ");
    	}
    	
    }
    

    求欧拉函数

    分解质因数做法

    int euler_phi(int n) {
        int m = (int)sqrt(n+0.5);//(还是说解决精度问题//这里都行吧
        int ans =  n;
        for(int i = 2; i <= m; i++) if(n%i == 0) {
            ans = ans / i * (i-1);
            while(n%i == 0) n /= i;
        }
        if(n > 1) ans = ans / n * (n-1);//还要看n有没有大于sqrt(n)的质因数 
    }
    

    线性筛法

       int not_prime[N] = {1, 1};
       int prime[N], tot;
       int n, m;
       int phi[N];
       
       void L_S(){
        for(int i = 2; i <= n; i++) {
            if(!not_prime[i]) {
                prime[++tot] = i;
                phi[i] = i - 1;//基本性质2:费马小定理 
            }
            for(int j = 1; j <= tot && i*prime[j] <= n; j++) {
                not_prime[i*prime[j]] = 1;
                if(i % prime[j] == 0) {//如果i是prime的倍数->i与prime[j]不互质 
                    phi[i*prime[j]] = phi[i]*prime[j];
                    break;
                }
                phi[i*prime[j]] = phi[i]*(prime[j]-1);//互质的时候,左边=phi[i]*phi[prime[j]],即=右边的
            }
        }
       }
    

    最小生成树

    不会prim.....

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int MAXM = 200000+9;
    const int MAXN = 5000+9;
    int n,m,ans;
    
    struct node{
    	int x,y,val;
    }e[MAXM];
    
    bool cmp(node x, node xx) {
    	return x.val < xx.val ;
    }
    
    int fa[MAXN];
    
    int dad(int x) {
    	if(x == fa[x] ) return fa[x];
    	else return fa[x] = dad(fa[x] );
    }
    
    int main() {
    	scanf("%d%d",&n,&m);
    	for(int i = 1; i <= n; i++) fa[i] = i;
    	for(int i = 1; i <= m; i++) {
    		scanf("%d%d%d",&e[i].x ,&e[i].y ,&e[i].val ) ;	
    	}
    	sort(e+1, e+1+m, cmp);
    	int x,y;
    	for(int i = 1; i <= m; i++) {
    		x = dad(e[i].x) , y = dad(e[i].y) ;
    		if(x != y) {
    			fa[x] = fa[y];
    			ans += e[i].val ;
    		}
    	}
    	printf("%d",ans);
    }
    

    有理数取余: 快读中加取模

    //也可以用exgcd之类的

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int MOD = 19260817;
    
    int read() {
    	char ch = getchar(); int x = 0, f = 1;
    	while(ch<'0' || ch>'9') {if(ch=='-') f = -1; ch = getchar();}
    	while(ch>='0' && ch<='9') {x = ((x<<1)+(x<<3)+(ch^48))%MOD; ch = getchar();}
    	return x*f;
    }
    
    int a, b;
    
    int qsm(int a, int b, int p) {
    	int ans = 1;
    	while(b) {
    		if(b & 1) ans = (long long)ans*a%p;
    		b >>= 1;
    		a = (long long)a*a%p;
    	}
    	return ans%p;
    }
    
    int main() {
    	a = read(), b = read();
    	if(b == 0) {
    		printf("Angry!
    ");
    		return 0;
    	}
    	printf("%lld
    ", (long long)a*qsm(b, MOD-2, MOD)%MOD);
    }
    

    快速幂||取余运算

    #include<cstdio>
    using namespace std;
    #define ll long long
    
    ll a, b, p;
    ll ksm(ll a, ll b, ll p) {
    	if(a == 0) return 0;
    	ll res = 1;
    	while(b) {
    		if(b&1)	res = (res*a)%p;
    		b >>= 1;
    		a = (a*a)%p;
    	}
    	return res%p;
    }
    
    int main() {
    	scanf("%lld%lld%lld", &a, &b, &p);
    	printf("%lld^%lld mod %lld=%lld
    ", a, b, p, ksm(a, b, p));
    	return 0;
    } 
    

    建议用上面那个....

    下面是刘汝佳书里的

    #include<cstdio>
    using namespace std;
    
    long long pow_mod(long long a, long long b, long long p) {
    	if(!b) return 1;
    	long long x = pow_mod(a, b/2, p);
    	long long ans = (x%p)*(x%p)%p;
    	if(b%2) ans = ans*a%p;
    	return ans;
    }
    
    long long a, b, p;
    
    int main() {
    	scanf("%lld%lld%lld",&a, &b,&p);
    	long long ans = pow_mod(a, b, p);
    	if(b == 0 && p == 1) ans = 0;
    	printf("%lld^%lld mod %lld=%lld
    ",a, b, p, ans);
    }
    

    最长公共子序列

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int N = 100000+9;
    const int MAX = N;
    
    int a[N], b[N], map[MAX];
    int n;
    int f[N];
    
    int main() {
    	scanf("%d", &n);
    	for(int i = 1; i <= n; i++) scanf("%d", &a[i]), map[a[i]] = i;
    	for(int j = 1; j <= n; j++) scanf("%d", &b[j]), a[j] = map[b[j]], f[j] = MAX;
    	int len = 1;
    	f[1] = a[1];
    	for(int i = 2; i <= n; i++) {
    		if(a[i] > f[len]) f[++len] = a[i];
    		else {
    			int l = 1, r = len, mid;
    			while(l < r) {
    				mid = (l+r)>>1;
    				if(f[mid] >= a[i]) r = mid;
    				else l = mid + 1;
    			}
    			f[l] = min(f[l], a[i]);
    		}
    	}
    	printf("%d", len);
    	return 0;
    }
    

    单源最短路

    dijkstra

    #include<cstdio>
    #include<queue>
    using namespace std;
    const int N = 100000+9;
    const int M = 200000+9;
    const int INF = 2147000047;
    
    int n, m, S;
    int dis[N], vis[N];
    
    struct node{
    	int id, dis;
    	node(int id, int dis) : id(id), dis(dis) {}
    	bool operator < (const node& xxx) const {
    		return dis > xxx.dis;
    	}
    };
    
    priority_queue <node> q;
    
    struct edge{
    	int y, nxt, val;
    }e[M];
    int head[N], cnt;
    void add_edge(int x, int y, int val) {
    	e[++cnt].y = y;
    	e[cnt].val = val;
    	e[cnt].nxt = head[x];
    	head[x] = cnt;
    }
    
    void dijkstra() {
    	for(int i = 1; i <= n; i++) dis[i] = INF;
    	dis[S] = 0;
    	q.push(node(S, dis[S]));
    	while(!q.empty()) {
    		node tmp = q.top(); q.pop();
    		int now = tmp.id;
    		if(vis[now]) continue;
    		vis[now] = 1;
    		for(int i = head[now]; i; i = e[i].nxt) {
    			if(dis[e[i].y] > tmp.dis + e[i].val) {
    				dis[e[i].y] = tmp.dis + e[i].val;
    				q.push(node(e[i].y, dis[e[i].y]));
    			}
    		}
    	}
    }
    
    int main() {
    	scanf("%d%d%d",&n, &m, &S);
    	int x, y, val;
    	for(int i = 1; i <= m; i++) {
    		scanf("%d%d%d",&x,&y,&val);
    		add_edge(x, y, val);
    	}
    	dijkstra();
    	for(int i = 1; i <= n; i++) printf("%d ", dis[i]);
    }
    

    spfa

    #include<cstdio>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int N = 10000+99;
    const int M = 500000+99;
    const int INF = 2147483647;
    
    int n, m, s;
    struct edge{
    	int y, val, nxt;
    }e[M];
    int head[N], cnt;
    void add_edge(int x, int y, int val) {
    	e[++cnt].y = y;
    	e[cnt].val = val;
    	e[cnt].nxt = head[x];
    	head[x] = cnt;
    }
    
    int dis[N], vis[N];
    queue<int> q;
    
    void spfa() {
    	for(int i = 1; i <= n; i++) dis[i] = INF, vis[i] = 0;
    	dis[s] = 0;
    	vis[s] = 1;
    	q.push(s);
    	while(!q.empty()) {
    		int now = q.front(); q.pop();
    		vis[now] = 0;
    		for(int i = head[now]; i; i = e[i].nxt) if(dis[e[i].y] > dis[now] + e[i].val) {
    			dis[e[i].y] = dis[now] + e[i].val;
    			if(!vis[e[i].y]) q.push(e[i].y), vis[e[i].y] = 1;
    		}
    	}
    }
    
    int main() {
    	scanf("%d%d%d", &n, &m, &s);
    	int x, y, val;
    	for(int i = 1; i <= m; i++) {
    		scanf("%d%d%d", &x, &y, &val);
    		add_edge(x, y, val);
    	}
    	spfa();
    	for(int i = 1; i <= n; i++) printf("%d ", dis[i]);
    	return 0;
    }
    

    高精度

    数组版

    #include<cstdio>
    #include<string>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    const int N = 100000;
    
    int a[N], b[N], c[N], lena, lenb, lenc;
    string x, y;
    
    void jinwei() {
        for(int i = 1; i <= lenc; i++) if(c[i] >= 10) {
            c[i+1] += c[i]/10;
            c[i] %= 10;
            if(i == lenc) lenc++;
        }
        while(lenc && c[lenc] == 0) lenc--;//保证lenc不为负 
    }
    
    int main() {
        cin>>x>>y;
        lena = x.length(), lenb = y.length();
        /*if(lena < lenb || (lena==lenb && x < y)) {//减法时使用 
            swap(x, y);
            swap(lena, lenb);//保证a>=b 
            printf("-");
        }*/
        for(int i = 0; i < lena; i++) a[lena-i] = x[i]-'0';
        for(int i = 0; i < lenb; i++) b[lenb-i] = y[i]-'0';
    //  for(int i = lena; i >= 1; i--) printf("%d", a[i]);
    //  printf("
    ");
    //  for(int i = lenb; i >= 1; i--) printf("%d", b[i]);
    //  printf("
    ");
        
    //高精加: 非负数相加 
    /*  lenc = max(lena, lenb);
        for(int i = 1; i <= lenc; i++) c[i] = a[i]+b[i];
        jinwei();*/
        
    //高精减 
    /*  for(int i = 1, j = 1; i <= lena || j <= lenb; i++, j++) {
            if(a[i] < b[i]) {a[i] += 10; --a[i+1];}
            c[i] = a[i] - b[i];
        }
        lenc = lena;
        while(c[lenc] == 0 && lenc) lenc--;//注意使lenc不为负 */
        
    //高精乘
    /*  for(int i = 1; i <= lena; i++) 
            for(int j = 1; j <= lenb; j++) 
                c[i+j-1] += a[i]*b[j]; 
        lenc = lena+lenb-1;
        jinwei();*/ 
        if(lenc == 0) printf("0");
        else for(int i = lenc; i > 0; i--)  printf("%d", c[i]);
        return 0;
    }
    
    //高精除低精 
    /*  for(int i = lena; i >= 1; i--) {
            a[i-1] += (a[i]%k)*10;
            a[i] = a[i]/k;
        }
        while(a[lena] == 0 && lena) lena--;
        if(lena == 0) printf("0");
        else for(int i = lena; i >= 1; i--) printf("%d", a[i]);*/
    //高精%低精 
    /*  int yushu = 0;
        for(int i = lena; i >= 1; i--) {
            yushu = yushu*10+a[i];
            yushu %= k;
        } 
        printf("%d", yushu);*/
    

    结构体版高精度

    #include<cstdio>
    #include<cstring>
    #include<vector>
    #include<iostream>
    using namespace std;
    const int N = 1000000;//共几位(乘法时使用 
    int C[N];
    
    struct BigInteger {
        static const int BASE = 10000;
        static const int WIDTH = 4;//记得修改压位的时候,下面重载“<<”中的sprintf处也要修改
        vector<int> s;
        void cr() {//去除前导0 
            while(s.size() && s.back() == 0) s.pop_back();
            return ;
        }
    
        BigInteger(long long num = 0) { *this = num; }// 构造函数
        BigInteger operator = (long long num) { // 赋值运算符
            s.clear();
            do {
                s.push_back(num % BASE);
                num /= BASE;
            } while(num > 0);
            return *this;
        }
        BigInteger(const string& str) {*this = str;}   // 构造函数
        BigInteger operator = (const string& str) { // 赋值运算符
            s.clear();
            int x, len = (str.length() - 1) / WIDTH + 1;
            for(int i = 0; i < len; i++) {
                int end = str.length() - i*WIDTH;//stl左闭右开
                int start = max(0, end - WIDTH);//“开着的右”-“真实长度”=“闭着的左”
                sscanf(str.substr(start, end-start).c_str(), "%d", &x);
                //str.substr(start, len): 从string类型的str中,截取以start为左端点,长度为len的string
                //str.c_str(): 把string类型的str转化成数组??//这两个我也没仔细查,以后会补上的
                s.push_back(x);
            }
            return *this;
        }
    
        BigInteger operator + (const BigInteger& b) const {//重载运算符
            BigInteger c;
            c.s.clear();
            for(int i = 0, g = 0; g != 0 || i < s.size() || i < b.s.size(); i++) {
                int x = g;//g表示进位数
                if(i < s.size()) x += s[i];
                if(i < b.s.size()) x += b.s[i];
                c.s.push_back(x % BASE);
                g = x / BASE;
            }
            c.cr();
            return c;
        }
        BigInteger operator - (const BigInteger& b) const {//s > b.s时使用
            BigInteger c;
            c.s.clear();
            for(int i = 0, y = 0; y != 0 || i < s.size(); i++) {
                int x = s[i]-y;//y表示余数
                y = 0;
                if(i < b.s.size()) x -= b.s[i];
                if(x < 0) x += BASE, y = 1;
                c.s.push_back(x % BASE);
            }
            c.cr();
            return c;
        }
    
        bool operator < (const BigInteger& b) const {
            if(s.size() != b.s.size()) return s.size() < b.s.size();
            for(int i = s.size() - 1; i >= 0; i--) if(s[i] != b.s[i]) return s[i] < b.s[i];
            return false;//相等
        }
        
        BigInteger operator * (const BigInteger& b) const {
            int lenc = s.size()+b.s.size();
            for(int i = 0; i < lenc; i++) C[i] = 0;//记得清0 
            for(int i = 0; i < s.size(); i++) 
                for(int j = 0; j < b.s.size(); j++){
                    C[i+j] += s[i]*b.s[j];
                    C[i+j+1] += C[i+j]/BASE;
                    C[i+j] %= BASE;
                }
            BigInteger c; c.s.clear();//把已压位的C数组放进struct c 
            while(C[lenc-1] == 0) --lenc;
            for(int i = 0; i < lenc; i++) c.s.push_back(C[i]);
    //      c.cr();//上面已经删去前导0了 
            return c;
        }
    };
    
    ostream& operator << (ostream &out,const BigInteger& x) {
        out << x.s.back();
        for(int i = x.s.size()-2; i >= 0; i--) {
            char buf[20];
            sprintf(buf, "%04d", x.s[i]);
            for(int j = 0; j < strlen(buf); j++) out << buf[j];
        }
        return out;
    }
    
    istream& operator >> (istream &in, BigInteger& x) {
        string s;
        if(!(in >> s)) return in;
        x = s;
    //  x.cr();//在这不加时,运算并不会出错,但直接输入输出会有点问题
        return in;
    }
    
    //#include<set>
    //#include<map>
    //set<BigInteger> s;
    //map<BigInteger, int> m;
    
    int main() {
        BigInteger a, b;
        cin>>a>>b;
    //  if(a < b) { printf("-"); swap(a, b);} //减法
    //  cout<<a-b;
        
    //  cout<<a+b; //加法
     
        cout<<a*b; //乘法(不能压8位, 会溢出,建议压4位 
        return 0;
    }
    

    LCA

    树链剖分做法

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int MAXN = 500000+99;
    const int MAXM = MAXN<<1;
    
    int n,m,s;
    int cnt, head[MAXN];
    struct node{
    	int tp, size, fa, son, deep, in/*, out*/;
    	//top, size,它爸, 重儿子 , 深度 , dfs序 
    }a[MAXN];
    int clock;
    
    struct seg{
    	int y,next;
    }e[MAXM];
    
    void add_edge(int x, int y) {
    	e[++cnt].y = y;
    	e[cnt].next = head[x];
    	head[x] = cnt;
    }
    
    void dfs1(int x, int fa) {//先找到重儿子 
    	a[x].deep = a[fa].deep + 1;
    	a[x].size = 1;//包括自己 
    	a[x].fa = fa;
    	for(int i = head[x]; i; i=e[i].next ) 
    		if(e[i].y != fa) {
    			dfs1(e[i].y , x);
    			a[x].size += a[e[i].y ].size ;
    			a[x].son = a[a[x].son ].size > a[e[i].y].size ? a[x].son : e[i].y ;
    		}
    }
    
    void dfs2(int x, int tp) {//再找top 
    //	a[x].in = ++clock;
    	a[x].tp = tp;
    	if(a[x].son ) dfs2(a[x].son , tp);//如果有重儿子要先dfs重儿子(叶子节点木有?? 
    	for(int i = head[x]; i; i = e[i].next ) 
    		if(e[i].y != a[x].son && e[i].y != a[x].fa ) //注意判断是不是重儿子(没必要dfs)和祖先(不能dfs) 
    			dfs2(e[i].y , e[i].y );
    }
    
    int lca(int l, int r) {
    	while(a[l].tp != a[r].tp ) {
    		if(a[a[l].tp].deep  < a[a[r].tp ].deep ) swap(l, r);
    		l = a[a[l].tp].fa ;
    	}
    	return a[l].deep < a[r].deep ? l : r;
    } 
    
    int main() {
    	scanf("%d%d%d",&n,&m,&s);
    	int x,y;
    	for(int i = 1; i < n; i++) {
    		scanf("%d%d",&x, &y);
    		add_edge(x, y);
    		add_edge(y, x);
    	}
    	dfs1(s, s);
    	dfs2(s, s);
    	for(int i = 1; i <= m; i++) {
    		scanf("%d%d",&x, &y);
    		printf("%d
    ",lca(x, y));
    	}
    }
    

    背包

    网上有很多,麻烦同学们自己找

    (其实我没写233...)

  • 相关阅读:
    如何用VSCode编写Java程序
    使用Xcode + Python进行IOS运动轨迹模拟
    聚类(Clustering)
    异常值(outlier)
    线性回归(regression)
    自适应增强(Adaptive Boosting)
    决策树(Decision Trees)
    支持向量机(SVM)
    朴素贝叶斯(Naive Bayesian)
    ItChat与图灵机器人的结合
  • 原文地址:https://www.cnblogs.com/tyner/p/11861454.html
Copyright © 2011-2022 走看看