zoukankan      html  css  js  c++  java
  • 13. 左式堆(left heap)

    fatal.h

    #include <stdio.h>
    #include <stdlib.h>
    
    #define Error(Str)        FatalError(Str)
    #define FatalError(Str)   fprintf(stderr, "%s
    ", Str), exit(1)
    

    leftheap.h

    typedef int ElementType;
    
    #ifndef _LeftHeap_H
    #define _LeftHeap_H
    
    struct TreeNode;
    typedef struct TreeNode *PriorityQueue;
    
    /* Minimal set of priority queue operations */
    /* Note that nodes will be shared among several */
    /* leftist heaps after a merge; the user must */
    /* make sure to not use the old leftist heaps */
    
    PriorityQueue Initialize(void);
    ElementType FindMin(PriorityQueue H);
    int IsEmpty(PriorityQueue H);
    PriorityQueue Merge(PriorityQueue H1, PriorityQueue H2);
    
    #define Insert(X, H) (H = Insert1((X), H))
    
    PriorityQueue Insert1(ElementType X, PriorityQueue H);
    
    #define DeleteMin(H) (MinElement = FindMin(H), H = DeleteMin1(H), MinElement)
    
    PriorityQueue DeleteMin1(PriorityQueue H);
    
    void PreorderTraversal(PriorityQueue H);
    void InorderTraversal(PriorityQueue H);
    void PostorderTraversal(PriorityQueue H);
    void LevelorderTraversal(PriorityQueue H);
    
    #endif
    

    queue.h

    #ifndef _Queue_h
    #define _Queue_h
    
    struct QueueRecord;
    typedef struct QueueRecord *Queue;
    
    int IsEmptyQueue(Queue Q);
    int IsFullQueue(Queue Q);
    Queue CreateQueue(int MaxElements);
    void DisposeQueue(Queue Q);
    void MakeEmptyQueue(Queue Q);
    void Enqueue(PriorityQueue X, Queue Q);
    PriorityQueue Front(Queue Q);
    void Dequeue(Queue Q);
    PriorityQueue FrontAndDequeue(Queue Q);
    
    #endif
    

    leftheap.c

    #include "leftheap.h"
    #include "queue.h"
    #include "fatal.h"
    #include <stdlib.h>
    
    
    struct TreeNode
    {
        ElementType   Element;
        PriorityQueue Left;
        PriorityQueue Right;
        int           Npl;
    };
    
    PriorityQueue Initialize(void)
    {
        return NULL;
    }
    static PriorityQueue Merge1(PriorityQueue H1, PriorityQueue H2);
    
    PriorityQueue Merge(PriorityQueue H1, PriorityQueue H2)
    {
        if (H1 == NULL)
            return H2;
        if (H2 == NULL)
            return H1;
        if (H1->Element < H2->Element)
            return Merge1(H1, H2);
        else
            return Merge1(H2, H1);
    }
    
    void SwapChildren(PriorityQueue H)
    {
        PriorityQueue Tmp;
    
        Tmp = H->Left;
        H->Left = H->Right;
        H->Right = Tmp;
    }
    
    static PriorityQueue Merge1(PriorityQueue H1, PriorityQueue H2)
    {
        if (H1->Left == NULL)  /* Single node */
            H1->Left = H2;      /* H1->Right is already NULL,
                                                H1->Npl is already 0 */
        else
        {
            H1->Right = Merge(H1->Right, H2);
            if (H1->Left->Npl < H1->Right->Npl)
                SwapChildren(H1);
    
            H1->Npl = H1->Right->Npl + 1;
        }
        return H1;
    }
    
    PriorityQueue Insert1(ElementType X, PriorityQueue H)
    {
        PriorityQueue SingleNode;
    
        SingleNode = malloc(sizeof(struct TreeNode));
        if (SingleNode == NULL)
            FatalError("Out of space!!!");
        else
        {
            SingleNode->Element = X; SingleNode->Npl = 0;
            SingleNode->Left = SingleNode->Right = NULL;
            H = Merge(SingleNode, H);
        }
        return H;
    }
    
    /* DeleteMin1 returns the new tree; */
    /* To get the minimum, use FindMin */
    /* This is for convenience */
    PriorityQueue DeleteMin1(PriorityQueue H)
    {
        PriorityQueue LeftHeap, RightHeap;
    
        if (IsEmpty(H))
        {
            Error("Priority queue is empty");
            return H;
        }
    
        LeftHeap = H->Left;
        RightHeap = H->Right;
        free(H);
        return Merge(LeftHeap, RightHeap);
    }
    
    ElementType FindMin(PriorityQueue H)
    {
        if (!IsEmpty(H))
            return H->Element;
        Error("Priority Queue is Empty");
        return  0;
    }
    
    int IsEmpty(PriorityQueue H)
    {
        return H == NULL;
    }
    
    void PreorderTraversal(PriorityQueue H)
    {
        if (H != NULL)
        {
            printf("%d	", H->Element);
            PreorderTraversal(H->Left);
            PreorderTraversal(H->Right);
        }
    }
    
    void InorderTraversal(PriorityQueue H)
    {
        if (H != NULL)
        {
            InorderTraversal(H->Left);
            printf("%d	", H->Element);
            InorderTraversal(H->Right);
        }
    }
    
    void PostorderTraversal(PriorityQueue H)
    {
        if (H != NULL)
        {
            PostorderTraversal(H->Left);
            PostorderTraversal(H->Right);
            printf("%d	", H->Element);
        }
    }
    
    void LevelorderTraversal(PriorityQueue H)
    {
        Queue Q;
        PriorityQueue TmpCell;
    
        if (H == NULL)
            return;
    
        Q = CreateQueue(80);
        Enqueue(H, Q);
        while (!IsEmptyQueue(Q))
        {
            TmpCell = FrontAndDequeue(Q);
            printf("%d	", TmpCell->Element);
            if (TmpCell->Left != NULL)
                Enqueue(TmpCell->Left, Q);
            if (TmpCell->Right != NULL)
                Enqueue(TmpCell->Right, Q);
        }
    }
    

    queue.c

    #include "leftheap.h"
    #include "queue.h"
    #include "fatal.h"
    #include <stdlib.h>
    
    #define MinQueueSize ( 5 )
    
    struct QueueRecord
    {
        int Capacity;
        int Front;
        int Rear;
        int Size;
        PriorityQueue *Array;
    };
    
    int IsEmptyQueue(Queue Q)
    {
        return Q->Size == 0;
    }
    
    int IsFullQueue(Queue Q)
    {
        return Q->Size == Q->Capacity;
    }
    
    Queue CreateQueue(int MaxElements)
    {
        Queue Q;
    
        if (MaxElements < MinQueueSize)
            Error("Queue size is too small");
    
        Q = malloc(sizeof(struct QueueRecord));
        if (Q == NULL)
            FatalError("Out of space!!!");
    
        Q->Array = malloc(sizeof(PriorityQueue) * MaxElements);
        if (Q->Array == NULL)
            FatalError("Out of space!!!");
        Q->Capacity = MaxElements;
        MakeEmptyQueue(Q);
    
        return Q;
    }
    
    void MakeEmptyQueue(Queue Q)
    {
        Q->Size = 0;
        Q->Front = 1;
        Q->Rear = 0;
    }
    
    void DisposeQueue(Queue Q)
    {
        if (Q != NULL)
        {
            free(Q->Array);
            free(Q);
        }
    }
    
    static int Succ(int Value, Queue Q)
    {
        if (++Value == Q->Capacity)
            Value = 0;
        return Value;
    }
    
    void Enqueue(PriorityQueue X, Queue Q)
    {
        if (IsFullQueue(Q))
            Error("Full queue");
        else
        {
            Q->Size++;
            Q->Rear = Succ(Q->Rear, Q);
            Q->Array[Q->Rear] = X;
        }
    }
    
    PriorityQueue Front(Queue Q)
    {
        if (!IsEmptyQueue(Q))
            return Q->Array[Q->Front];
        Error("Empty queue");
        return 0;  /* Return value used to avoid warning */
    }
    
    void Dequeue(Queue Q)
    {
        if (IsEmptyQueue(Q))
            Error("Empty queue");
        else
        {
            Q->Size--;
            Q->Front = Succ(Q->Front, Q);
        }
    }
    
    PriorityQueue FrontAndDequeue(Queue Q)
    {
        PriorityQueue X = 0;
    
        if (IsEmptyQueue(Q))
            Error("Empty queue");
        else
        {
            Q->Size--;
            X = Q->Array[Q->Front];
            Q->Front = Succ(Q->Front, Q);
        }
        return X;
    }
    

    testleft.c

    #include "leftheap.h"
    #include <stdio.h>
    
    #define MaxSize 10
    
    int main()
    {
        PriorityQueue H;
        int i, j, MinElement;
    
        H = Initialize();
        for (i = 0, j = MaxSize / 2; i < MaxSize; i++, j = (j + 17) % MaxSize)
        {
            Insert(j, H);
            printf("Insert %d", j);
            printf("
    先序遍历:
    ");
            PreorderTraversal(H);
            printf("
    中序遍历:
    ");
            InorderTraversal(H);
            printf("
    后序遍历:
    ");
            PostorderTraversal(H);
            printf("
    层序遍历:
    ");
            LevelorderTraversal(H);
            printf("
    
    ");
        }
    
        j = 0;
        while (!IsEmpty(H))
        {
            if (DeleteMin(H) != j++)
                printf("Error in DeleteMin, %d
    ", j);
            printf("DeleteMin %d 之后,执行左右子树Merge", j-1);
            printf("
    先序遍历:
    ");
            PreorderTraversal(H);
            printf("
    中序遍历:
    ");
            InorderTraversal(H);
            printf("
    后序遍历:
    ");
            PostorderTraversal(H);
            printf("
    层序遍历:
    ");
            LevelorderTraversal(H);
            printf("
    
    ");
        }
        printf("Done...
    ");
        return 0;
    }
    
  • 相关阅读:
    scrapy框架之comand line tool
    CSS选择器与XPath语言
    Selenium之Web页面滚动条滚操作
    Selenium+Chrome+PhantomJS 爬取淘宝
    爬取今日头条中的图片
    django 和 mongdb 写一个简陋的网址,以及用django内置的分页功能
    charts 画饼图
    charts 画折线图
    oracle的char和varchar类型
    ORA-02049: 超时: 分布式事务处理等待锁的解决方法
  • 原文地址:https://www.cnblogs.com/typewriter/p/6377225.html
Copyright © 2011-2022 走看看