题意:将n个蛋糕分给k个人,要保证每个人都有蛋糕或蛋糕块,蛋糕可切,
1、若蛋糕值为偶数,那一次可切成对等的两块。
2、若蛋糕值为奇数,则切成的两块蛋糕其中一个比另一个蛋糕值多1。
3、若蛋糕值为1,则不可切。
问每个人拥有的蛋糕中最小蛋糕值可能的最大值是多少。
分析:
1、若每个蛋糕都分成蛋糕值为1,即n个蛋糕的蛋糕值总和<k,则输出-1。
2、验证mid是否成立,若某蛋糕值x大于mid,则可切,并将该蛋糕可切成的块数保存在vis[x]中。
3、若mid为5,而x为11,则有必要切蛋糕x,若x为8,则没必要切蛋糕x。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 1e6 + 10; const int MAXT = 1000000 + 10; using namespace std; int n; LL k; int a[MAXN]; int vis[MAXN * 10]; int dfs(int x, int t){ if(vis[x] != -1) return vis[x]; if(x == 1) return vis[x] = 1; if(x >= 2 * t){ if(x & 1){ return vis[x] = ((vis[x / 2 + 1] = dfs(x / 2 + 1, t)) + (vis[x / 2] = dfs(x / 2, t))); } else{ return vis[x] = (vis[x / 2] = dfs(x / 2, t)) * 2; } } else if(x >= t){ return vis[x] = 1; } } bool judge(int x){ memset(vis, -1, sizeof vis); LL cnt = 0; for(int i = 0; i < n; ++i){ if(a[i] >= x){ cnt += (LL)dfs(a[i], x); } else return false; if(cnt >= k){ return true; } } return false; } int solve(){ int l = 1, r = 1e7; while(l < r){ int mid = l + (r - l + 1) / 2; if(judge(mid)) l = mid; else r = mid - 1; } return l; } int main(){ while(scanf("%d%I64d", &n, &k) == 2){ LL sum = 0; for(int i = 0; i < n; ++i){ scanf("%d", &a[i]); sum += LL(a[i]); } if(sum < k){ printf("-1\n"); continue; } sort(a, a + n, greater<int>()); printf("%d\n", solve()); } return 0; }