题意:在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的: 有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
分析:按照行走路径状态转移即可。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 100 + 10; const int MAXT = 250000 + 10; using namespace std; int a[MAXN][MAXN]; int dp[MAXN][MAXN]; int main(){ int T; scanf("%d", &T); while(T--){ memset(dp, 0, sizeof dp); int N; scanf("%d", &N); for(int i = 1; i <= N; ++i){ for(int j = 1; j <= i; ++j){ scanf("%d", &a[i][j]); } } dp[1][1] = a[1][1]; for(int i = 2; i <= N; ++i){ for(int j = 1; j <= i; ++j){ if(j == 1){ dp[i][j] = max(dp[i][j], dp[i - 1][j] + a[i][j]); } else if(j == i){ dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + a[i][j]); } else{ dp[i][j] = max(dp[i - 1][j - 1] + a[i][j], dp[i - 1][j] + a[i][j]); } } } int ans = 0; for(int i = 1; i <= N; ++i){ ans = max(ans, dp[N][i]); } printf("%d ", ans); } return 0; }