zoukankan      html  css  js  c++  java
  • 简单树上问题


    P1099

    直接把直径揪出来从一边到一边扫过去就行了。

    记录

    P5659

    按照字典序贪心,对每个点维护相邻的边的删除顺序, 实际上细节并不多。

    记录

    P5666

    考虑计算每个点作为重心的次数。

    首先把随便一个重心拿出来做根, 然后显然 x 要想作为重心就不能切 x 子树里的边。(这一步真 tm 妙

    那么剩下的情况就是切边后,

    1. x 和原来的根不在一个连通块里
    2. x 和原来的根在一个连通块里

    如图。

    louis

    以下用 (siz_x) 表示以 x 为根的子树的节点个数。

    对于切断的边 (e), 称上面的那个点为 (up_e), 下面的那个点为 (down_e)

    (g_x = maxlimits_{yin son(x)}{siz_y})

    使用的重心判断方法是去掉其后任意连通块的大小乘 2 后都不超过整棵树的大小。

    那么对于情况 1, 如果 x 为重心, 那么

    1. (2 imes g_xle siz_{down_e})
    2. (2 imes (siz_{down_e}-siz_x)le siz_{down_e}), 即 (2 imes siz_xge siz_{down_e})

    对于情况 2, 如果 x 为重心, 那么

    1. (2 imes g_x le siz_{rt}-siz_{down_e})
    2. (2 imes(siz_{rt}-siz_{down_e}-siz_x)le siz_{rt}-siz_{down_e}), 即 (2 imes siz_xge siz_{rt}-siz_{down_e})

    特别地, 对于根,设其最大子树的根为 u, 次大子树的根为 v, 若删去的边不是 u 里面的也没有把 u 割出去, 那么需要满足 (2 imes siz_ule siz_{rt}-siz_{down_e}); 若使 (siz_u) 变化了或直接没有了, 显然 u 这个子树是满足条件的, 那么剩下的就是要判断剩下的子树, 即 (2 imes siz_vle siz_{rt}-siz_{down_e})

    可以发现都是值域上区间查询的形式, 不过要差分出正确的数据结构。

    具体地, 对于情况 1, dfs 时维护到根的树状数组即可;对于情况 2, 维护全局的树状数组, dfs 时维护到根的树状数组, 利用树上差分差分出子树的树状数组。

    挺简单的, 代码也不难写。

    记录

  • 相关阅读:
    (IOCP)-C#高性能Socket服务器的实现
    GraphQL和RESTful的区别
    HTTP Client Performance Improvements
    foobar2000 iOS使用,并连接PC的歌曲进行播放
    Spring中基于AOP的@AspectJ
    Spring中基于AOP的XML架构
    Spring框架的AOP
    Spring的AOP AspectJ切入点语法详解(转)
    Spring中实现自定义事件
    Spring的事件处理
  • 原文地址:https://www.cnblogs.com/tztqwq/p/14613119.html
Copyright © 2011-2022 走看看