zoukankan      html  css  js  c++  java
  • 12.pyecharts详细使用教程

    官方数据教程:

    柱状图-Bar

    //导入柱状图-Bar
    from pyecharts import Bar
    //设置行名
    columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
    //设置数据
    data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
    data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
    //设置柱状图的主标题与副标题
    bar = Bar("柱状图", "一年的降水量与蒸发量")
    //添加柱状图的数据及配置项
    bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])
    bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])
    //生成本地文件(默认为.html文件)
    bar.render()

    运行结果如下:

    饼图-Pie

    //导入饼图Pie
    from pyecharts import Pie
    //设置主标题与副标题,标题设置居中,设置宽度为900
    pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)
    //加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示
    pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)
    //加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签
    pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)
    //保存图表
    pie.render()
    img

    箱体图-Boxplot

    //导入箱型图Boxplot
    from pyecharts import Boxplot 
    boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")
    x_axis = ['降水量','蒸发量']
    y_axis = [data1,data2]
    //prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]
    yaxis = boxplot.prepare_data(y_axis)       
    boxplot.add("天气统计", x_axis, _yaxis)
    boxplot.render()
    img

    折线图-Line

    from pyecharts import Line
    line = Line("折线图","一年的降水量与蒸发量")
    //is_label_show是设置上方数据是否显示
    line.add("降水量", columns, data1, is_label_show=True)
    line.add("蒸发量", columns, data2, is_label_show=True)
    line.render()
    img

    雷达图-Rader

    from pyecharts import Radar
    radar = Radar("雷达图", "一年的降水量与蒸发量")
    //由于雷达图传入的数据得为多维数据,所以这里需要做一下处理
    radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]
    radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]
    //设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同
    schema = [ 
        ("Jan", 5), ("Feb",10), ("Mar", 10),
        ("Apr", 50), ("May", 50), ("Jun", 200),
        ("Jul", 200), ("Aug", 200), ("Sep", 50),
        ("Oct", 50), ("Nov", 10), ("Dec", 5)
    ]
    //传入坐标
    radar.config(schema)
    radar.add("降水量",radar_data1)
    //一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色
    radar.add("蒸发量",radar_data2,item_color="#1C86EE")
    radar.render()
    img

    散点图-scatter

    from pyecharts import Scatter
    scatter = Scatter("散点图", "一年的降水量与蒸发量")
    //xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置
    scatter.add("降水量与蒸发量的散点分布", data1,data2,xaxis_name="降水量",yaxis_name="蒸发量",
                yaxis_name_gap=40)
    scatter.render()
    img

    图表布局 Grid

    由于标题与图表是属于两个不同的控件,所以这里必须对下方的图表Line进行标题位置设置,否则会出现标题重叠的bug。

    from pyecharts import Grid
    //设置折线图标题位置
    line = Line("折线图","一年的降水量与蒸发量",title_top="45%")
    line.add("降水量", columns, data1, is_label_show=True)
    line.add("蒸发量", columns, data2, is_label_show=True)
    grid = Grid()
    //设置两个图表的相对位置
    grid.add(bar, grid_bottom="60%")
    grid.add(line, grid_top="60%")
    grid.render()
    img
    from pyecharts import Overlap
    overlap = Overlap()
    bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")
    bar.add("降水量", columns, data1, mark_point=["max", "min"])
    bar.add("蒸发量", columns, data2, mark_point=["max", "min"])
    overlap.add(bar)
    overlap.add(line)
    overlap.render()
    img

    总结

    1. 导入相关图表包
    2. 进行图表的基础设置,创建图表对象
    3. 利用add()方法进行数据输入与图表设置(可以使用print_echarts_options()来输出所有可配置项)
    4. 利用render()方法来进行图表保存

    pyecharts还有许多好玩的3D图表和地图图表,个人觉得地图图表是最好玩的,各位有兴趣可以去pyecharts的使用手册查看,有中文版的非常方便:pyecharts。

    转载网址:https://www.jianshu.com/p/554d64470ec9

  • 相关阅读:
    postgresql 53300错误
    linux su失败:无法设置用户ID:资源暂时不可用
    shell中使用带密码的方式直接pg_dump和psql
    pg数据库查询表大小
    linux安装postgresql简洁版
    检查linux版本命令
    博客园后台搜索自己的博客
    欧式洗车
    做生意
    无线AP隔离
  • 原文地址:https://www.cnblogs.com/ubuntu1987/p/11667200.html
Copyright © 2011-2022 走看看