大意: n节点无向图, 点$i$到点$j$的花费为$2dis(i,j)+a[j]$, 对于每个点, 求最少花费.
每条边权翻倍, 源点S向所有点$i$连边, 权为$a[i]$, 答案就为$S$到每个点的最短路距离.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, m, vis[N]; struct _ { int to; ll w; bool operator < (const _ &rhs) const { return w>rhs.w; } }; vector<_> g[N]; priority_queue<_> q; ll d[N]; void Dij(int s) { memset(d,0x3f,sizeof d); q.push({s,d[s]=0}); while (q.size()) { int u = q.top().to; q.pop(); if (vis[u]) continue; vis[u] = 1; for (_ e:g[u]) { ll dd = d[u]+e.w; int v=e.to; if (dd<d[v]) q.push({v,d[v]=dd}); } } } int main() { scanf("%d%d", &n, &m); REP(i,1,m) { int u, v; ll w; scanf("%d%d%lld", &u, &v, &w); g[u].pb({v,2*w}); g[v].pb({u,2*w}); } REP(i,1,n) { ll t; scanf("%lld", &t); g[n+1].pb({i,t}); } Dij(n+1); REP(i,1,n) printf("%lld ", d[i]);hr; }