You are given an array a of length n. We define fa the following way:
- Initially fa = 0, M = 1;
- for every 2 ≤ i ≤ n if aM < ai then we set fa = fa + aM and then set M = i.
Calculate the sum of fa over all n! permutations of the array a modulo 109 + 7.
Note: two elements are considered different if their indices differ, so for every array a there are exactly n! permutations.
先排好序, 考虑$a[i]$的贡献, 显然除了$a[i]$以外所有$ge a[i]$的数要全部排在$a[i]$前面才能有贡献, 即$inom{n}{n-i+1}(n-i)!(i-1)!=frac{n!}{n-i+1}$
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, a[N], f[N]; int main() { scanf("%d", &n); ll fac = 1, ans = 0; REP(i,1,n) scanf("%d",a+i), fac=fac*i%P; sort(a+1,a+1+n); REP(i,1,n) { if (a[i]==a[n]) break; if (a[i]==a[i-1]) ans+=f[i]=f[i-1]; else ans+=f[i]=fac*inv(n-i+1)%P*a[i]%P; } printf("%lld ",ans%P); }