大意: 给定树, 有$k$个帮派, 第$i$个帮派所占据点为$c_i$, 以及$c_i$两两相连路径上的所有点. 一个点可能被多个帮派占领. $q$个询问, 第$i$个询问给定$t_i$个帮派, 给定点$u$, 求将$t_i$个帮派合并后, 点$u$到帮派的最近距离.
先求出帮派合并后的$lca$, 若$u$不在$lca$所在子树内, 那么最短距离就是$dis(u,lca)$, 否则在帮派占据的点中, 找到$dfs$序与$u$最接近的点$x$, 显然$lca(u,x)$属于帮派, 所以最短距离就为$dis(u,lca(u,x))$.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e6+10; int n, k, q, qry[N], Top[N]; vector<int> g[N], f[N]; int no[N], son[N], L[N], R[N]; int sz[N], top[N], dep[N], fa[N]; void dfs(int x, int f, int d) { no[L[x]=++*L]=x,fa[x]=f,dep[x]=d,sz[x]=1; for (int y:g[x]) if (y!=f) { dfs(y,x,d+1),sz[x]+=sz[y]; if (sz[y]>sz[son[x]]) son[x]=y; } R[x]=*L; } void dfs(int x, int tf) { top[x]=tf; if (son[x]) dfs(son[x],tf); for (int y:g[x]) if (!top[y]) dfs(y,y); } int lca(int x, int y) { while (top[x]!=top[y]) { if (dep[top[x]]<dep[top[y]]) swap(x,y); x = fa[top[x]]; } return dep[x]<dep[y]?x:y; } int dis(int x, int y) { return dep[x]+dep[y]-2*dep[lca(x,y)]; } int main() { scanf("%d", &n); REP(i,2,n) { int u=rd(),v=rd(); g[u].pb(v),g[v].pb(u); } dfs(1,0,0),dfs(1,1); scanf("%d", &k); REP(i,1,k) { int c=rd(); REP(j,1,c) { int t=rd(); f[i].pb(L[t]); if (j==1) Top[i]=t; else Top[i]=lca(Top[i],t); } sort(f[i].begin(),f[i].end()); } scanf("%d", &q); while (q--) { int u=rd(),sz=rd(),Lca=0,ans=1e9; REP(i,1,sz) qry[i]=rd(),Lca=i==1?Top[qry[i]]:lca(Lca,Top[qry[i]]); if (L[Lca]<=L[u]&&L[u]<=R[Lca]) { REP(i,1,sz) { auto t = lower_bound(f[qry[i]].begin(),f[qry[i]].end(),L[u]); if (t!=f[qry[i]].end()) ans = min(ans, dis(u,lca(u,no[*t]))); if (t!=f[qry[i]].begin()) ans = min(ans, dis(u,lca(u,no[*--t]))); } } ans = min(ans,dis(u,Lca)); printf("%d ",ans); } }