给定字符串S, 求有多少长为$n$的字符串T, 使得S为T的子序列.
可以得到转移矩阵为
$egin{equation}
A
=egin{bmatrix}
25 & 0 & 0 &cdots &0 &0\
1 & 25 & 0 &cdots &0 &0\
0 & 1 & 25 & cdots & 0 & 0\
vdots & vdots & vdots & ddots & vdots &vdots\
0 & 0 & 0 &cdots &1& 26\
end{bmatrix}
end{equation}$
设$|S|=m$, 答案就为$A^n$的$(m,0)$项, 也就是说答案只与$S$的长度有关, 但是用矩阵幂的话复杂度是$O(m^3logn)$显然过不去.
实际上我们可以直接设$f(n)$为长为$n$的字符串的答案, 不去维护匹配的状态.
可以得到$f(n) = egin{cases} 0, & n< m \26f(n-1)+25^{n-m}inom{n-1}{m-1}, & nge m end{cases}$
前一部分表示在前$n-1$位已经有子序列等于$S$的情形, 那么第$n$位可以任取值.
后一部分表示在第$n$位时第一次出现子序列等于$S$的情形, 那么枚举前$m-1$位在$T$中的第一次出现位置, 其余位置可以任取其余的$25$个值.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e5+10; int t, clk; char s[N]; vector<pii> g[N]; int ans[N], f[N]; ll p25[N], fac[N], ifac[N]; ll C(int n, int m) { return fac[n]*ifac[n-m]%P*ifac[m]%P; } int main() { p25[0] = fac[0] = ifac[0] = 1; REP(i,1,N-1) { p25[i] = p25[i-1]*25%P; fac[i] = fac[i-1]*i%P; ifac[i] = inv(fac[i]); } scanf("%d%s", &t, s); int now = strlen(s); REP(i,1,t) { int op, x; scanf("%d", &op); if (op==1) scanf("%s", s), now = strlen(s); else scanf("%d", &x), g[now].pb(pii(x,++clk)); } REP(i,1,N-1) if (g[i].size()) { sort(g[i].begin(),g[i].end()); int sz = g[i].size(), now = 0; while (now<sz&&g[i][now].x<i) ++now; f[i-1] = 0; REP(j,i,N-1) { f[j] = (f[j-1]*26ll+C(j-1,i-1)*p25[j-i])%P; while (now<sz&&g[i][now].x==j) ans[g[i][now++].y] = f[j]; if (now>=sz) break; } } REP(i,1,clk) printf("%d ",ans[i]); }