给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度.
区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T$连边$(k,0)$. 对于每个区间$(l,r)$, $l$与$r$连边$(1,l-r)$.
最小费用相反数就为最大长度
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #include <unordered_map> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 999; #endif int n, m, k, S, T; struct _ {int from,to,w,f;}; vector<_> E; vector<int> g[N]; int a[N], pre[N], inq[N], d[N]; int mf,mc; queue<int> q; void add(int x, int y, int c, int w) { g[x].pb(E.size()); E.pb({x,y,c,w}); g[y].pb(E.size()); E.pb({y,x,0,-w}); } void mfmc() { mf=mc=0; while (1) { REP(i,1,T) a[i]=d[i]=INF,inq[i]=0; q.push(S),d[S]=0; while (!q.empty()) { int x=q.front(); q.pop(); inq[x] = 0; for (auto t:g[x]) { auto e=E[t]; if (e.w>0&&d[e.to]>d[x]+e.f) { d[e.to]=d[x]+e.f; pre[e.to]=t; a[e.to]=min(a[x],e.w); if (!inq[e.to]) { inq[e.to]=1; q.push(e.to); } } } } if (a[T]==INF) break; for (int u=T;u!=S;u=E[pre[u]].from) { E[pre[u]].w-=a[T]; E[pre[u]^1].w+=a[T]; } mf+=a[T],mc+=a[T]*d[T]; } } int b[N], l[N], r[N]; int main() { scanf("%d%d", &n, &k); REP(i,1,n) { scanf("%d%d",l+i,r+i); b[++*b]=l[i],b[++*b]=r[i]; } sort(b+1,b+1+*b),*b=unique(b+1,b+1+*b)-b-1; REP(i,1,n) { l[i]=lower_bound(b+1,b+1+*b,l[i])-b; r[i]=lower_bound(b+1,b+1+*b,r[i])-b; } S = *b+1, T = S+1; add(S,1,k,0),add(*b,T,k,0); REP(i,2,*b) add(i-1,i,k,0); REP(i,1,n) add(l[i],r[i],1,-b[r[i]]+b[l[i]]); mfmc(); printf("%d ", -mc); }