大意: $n$个城市, $m$种核电站, 第$i$种假设要建在第$x$个城市, 必须满足$[x-i,x+i]$范围内无其他核电站, 求建核电站的方案数.
简单$dp$题, 设$dp[i][j]$为位置$i$建第$j$种核电站的方案数.
枚举上一个核电站的位置来转移, 有:
$dp[i][1]=1+dp[i-2][1]+sumlimits_{k=1}^2 dp[i-3][k]+sumlimits_{k=1}^3dp[i-4][k]+...$
$dp[i][j]=dp[i][j-1]-sumlimits_{k=1}^{j-1}dp[i-j][k],space j>1$.
前缀优化一下即可$O(nm)$.
#include <iostream> #include <cstdio> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) using namespace std; const int P = 1e9+7; int dp[10010][110], s[10010]; int main() { int t; scanf("%d", &t); REP(cas,1,t) { int n, m; scanf("%d%d", &n, &m); REP(i,1,n) { int now = 1; dp[i][1] = 1; PER(j,1,i-2) { if (now==m) { (dp[i][1] += s[j]) %= P; break; } (dp[i][1] += dp[j][now++]) %= P; } REP(j,2,m) dp[i][j] = (dp[i][j-1]-(i-j>0?dp[i-j][j-1]:0))%P; REP(j,2,m) (dp[i][j] += dp[i][j-1]) %= P; s[i] = (s[i-1]+dp[i][m])%P; } int ans = (s[n]+1)%P; if (ans<0) ans += P; printf("Case %d: %d ", cas, ans); } }