大意: $n$行$m$列砖, 白天左侧边界每块砖有$p$概率被摧毁, 晚上右侧边界有$p$概率被摧毁, 求最后上下边界连通的概率.
记${dp}_{i,l,r}$为遍历到第$t$行时, 第$t$行砖块范围$[l,r]$的概率.
有${dp}_{i,l,r}=p_{l,r}sum {dp}_{i-1,l',r'}$ (要满足$[l',r']$与$[l,r]$相交)
$p_{l,r}$表示$k$天后剩余砖是$[l,r]$的概率.
考虑二维前缀优化, 记$f_{i,l,r}=sumlimits_{1le xle l}sumlimits_{1le yle r} {dp}_{i,x,y}$, 就有
$$egin{align} {dp}_{i,l,r} &=p_{l,r}(f_{i-1,m,r}+f_{i-1,r,m}-f_{i-1,m,l-1}-f_{i-1,r,r}) otag\ &=p_{l,r}(f_{i-1,r,m}-f_{i-1,l-1,l-1}) otagend{align}$$
最后所求答案为$f_{n,m,m}$. 但是这样复杂度是$O(nm^2)$
可以注意到$dp$的式子中所需要的$f$值非常少.
记$A_{i,x}=f_{i,x,m},B_{i,x}=f_{i,x,x}$, 有
$$dp_{i,l,r}=p_{l,r}(A_{i-1,r}-B_{i-1,l-1})$$
$$A_{i,x}=A_{i,x-1}+sumlimits_{xle kle m}{dp}_{i,x,k}$$
$$B_{i,x}=B_{i,x-1}+sumlimits_{1le kle x}{dp}_{i,k,x}$$
然后再进行前缀优化, 复杂度即为$O(nm)$
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e6+10, M = 2e3+10; int n, m, a, b, k; int fac[N],ifac[N],p[M],suf[M],pre[M]; int A[2][M],B[2][M],s1[M],s2[M]; void init() { fac[0]=1; REP(i,1,N-1) fac[i]=fac[i-1]*(ll)i%P; ifac[N-1]=inv(fac[N-1]); PER(i,0,N-2) ifac[i]=ifac[i+1]*(i+1ll)%P; } int C(int n, int m) { if (n<m) return 0; return (ll)fac[n]*ifac[m]%P*ifac[n-m]%P; } int main() { init(); cin>>n>>m>>a>>b>>k; int x = (ll)a*inv(b)%P, y = (ll)(P+b-a)*inv(b)%P; REP(i,1,min(m,k+1)) p[i] = (ll)C(k,i-1)*qpow(x,i-1)%P*qpow(y,k-i+1)%P; REP(i,1,m) { suf[i] = (suf[i-1]+p[m-i+1])%P; pre[i] = (pre[i-1]+p[i])%P; } REP(i,1,m) A[0][i] = 1; int cur = 0; REP(i,1,n) { cur ^= 1; REP(k,1,m) s1[k]=(s1[k-1]+(ll)p[m-k+1]*A[!cur][k])%P; REP(k,1,m) s2[k]=(s2[k-1]-(ll)p[k]*B[!cur][k-1])%P; REP(x,1,m) { A[cur][x] = A[cur][x-1]; int ret = (s1[m]-s1[x-1])%P; ret = (ret-(ll)(suf[m]-suf[x-1])*B[!cur][x-1])%P; A[cur][x] = (A[cur][x]+(ll)p[x]*ret)%P; } REP(x,1,m) { B[cur][x] = B[cur][x-1]; int ret = (s2[x]+(ll)pre[x]*A[!cur][x])%P; B[cur][x] = (B[cur][x]+(ll)p[m-x+1]*ret)%P; } } int ans = B[cur][m]; if (ans<0) ans += P; printf("%d ", ans); }