zoukankan      html  css  js  c++  java
  • Equalizing Two Strings CodeForces

    大意: 给定两个串$s,t$, 每次操作任选长度$len$, 分别翻转$s,t$中一个长$len$的子串, 可以进行任意次操作, 求判断能否使$s$和$t$相同.

    字符出现次数不一样显然无解, 否则若某种字符出现多次, 显然有解, 否则只要逆序对奇偶性相同就有解, 不同则无解.

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <cmath>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <cstring>
    #include <bitset>
    #include <functional>
    #include <random>
    #define REP(_i,_a,_n) for(int _i=_a;_i<=_n;++_i)
    #define PER(_i,_a,_n) for(int _i=_n;_i>=_a;--_i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(_a) ({REP(_i,1,n) cout<<_a[_i]<<',';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    const int N = 1e6+10;
    char s1[N],s2[N];
    int n;
    
    void work() {
    	scanf("%d%s%s",&n,s1+1,s2+1);
    	map<int,int> a1,a2;
    	REP(i,1,n) ++a1[s1[i]],++a2[s2[i]];
    	if (a1!=a2) return puts("NO"),void();
    	for (auto &t:a1) if (t.y>=2) return puts("YES"),void();
    	int f1=0,f2=0;
    	REP(i,1,n) REP(j,1,i-1) f1+=s1[j]>s1[i],f2+=s2[j]>s2[i];
    	puts((f1^f2)&1?"NO":"YES");
    }
    
    int main() {
    	int t;
    	scanf("%d", &t);
    	while (t--) work();
    }
    
  • 相关阅读:
    Primary key and Unique index
    Hash unique和Sort unique
    Oracle索引扫描算法
    Oracle预估的基数算法
    PGA突破pga_aggregate_target限制
    aix ipcs使用说明
    开窗函数和聚合函数区别
    【39.66%】【codeforces 740C】Alyona and mex
    【81.82%】【codeforces 740B】Alyona and flowers
    Android SDK离线安装
  • 原文地址:https://www.cnblogs.com/uid001/p/11808908.html
Copyright © 2011-2022 走看看