关于 SOLID 原则,我们已经学过单一职责、开闭、里式替换、接口隔离这四个原则。今天,我们再来学习最后一个原则:依赖反转原则。在前面几节课中,我们讲到,单一职责原则和开闭原则的原理比较简单,但是,想要在实践中用好却比较难。而今天我们要讲到的依赖反转原则正好相反。这个原则用起来比较简单,但概念理解起来比较难。比如,下面这几个问题,你看看能否清晰地回答出来:
- “依赖反转”这个概念指的是“谁跟谁”的“什么依赖”被反转了?“反转”两个字该如何理解?
- 我们还经常听到另外两个概念:“控制反转”和“依赖注入”。这两个概念跟“依赖反转”有什么区别和联系呢?它们说的是同一个事情吗?
- 如果你熟悉 Java 语言,那 Spring 框架中的 IOC 跟这些概念又有什么关系呢?
看了刚刚这些问题,你是不是有点懵?别担心,今天我会带你将这些问题彻底搞个清楚。之后再有人问你,你就能轻松应对。话不多说,现在就让我们带着这些问题,正式开始今天的学习吧!
控制反转(IOC)
在讲“依赖反转原则”之前,我们先讲一讲“控制反转”。控制反转的英文翻译是 Inversion Of Control,缩写为 IOC。此处我要强调一下,如果你是 Java 工程师的话,暂时别把这个“IOC”跟 Spring 框架的 IOC 联系在一起。关于 Spring 的 IOC,我们待会儿还会讲到。
我们先通过一个例子来看一下,什么是控制反转。
public class UserServiceTest {
public static boolean doTest() {
// ...
}
public static void main(String[] args) {//这部分逻辑可以放到框架中
if (doTest()) {
System.out.println("Test succeed.");
} else {
System.out.println("Test failed.");
}
}
}
在上面的代码中,所有的流程都由程序员来控制。如果我们抽象出一个下面这样一个框架,我们再来看,如何利用框架来实现同样的功能。具体的代码实现如下所示:
public abstract class TestCase {
public void run() {
if (doTest()) {
System.out.println("Test succeed.");
} else {
System.out.println("Test failed.");
}
}
public abstract boolean doTest();
}
public class JunitApplication {
private static final List<TestCase> testCases = new ArrayList<>();
public static void register(TestCase testCase) {
testCases.add(testCase);
}
public static final void main(String[] args) {
for (TestCase case: testCases) {
case.run();
}
}
把这个简化版本的测试框架引入到工程中之后,我们只需要在框架预留的扩展点,也就是 TestCase 类中的 doTest() 抽象函数中,填充具体的测试代码就可以实现之前的功能了,完全不需要写负责执行流程的 main() 函数了。 具体的代码如下所示:
public class UserServiceTest extends TestCase {
@Override
public boolean doTest() {
// ...
}
}
// 注册操作还可以通过配置的方式来实现,不需要程序员显示调用register()
JunitApplication.register(new UserServiceTest();
刚刚举的这个例子,就是典型的通过框架来实现“控制反转”的例子。框架提供了一个可扩展的代码骨架,用来组装对象、管理整个执行流程。程序员利用框架进行开发的时候,只需要往预留的扩展点上,添加跟自己业务相关的代码,就可以利用框架来驱动整个程序流程的执行。
这里的“控制”指的是对程序执行流程的控制,而“反转”指的是在没有使用框架之前,程序员自己控制整个程序的执行。在使用框架之后,整个程序的执行流程可以通过框架来控制。流程的控制权从程序员“反转”到了框架。
实际上,实现控制反转的方法有很多,除了刚才例子中所示的类似于模板设计模式的方法之外,还有马上要讲到的依赖注入等方法,所以,控制反转并不是一种具体的实现技巧,而是一个比较笼统的设计思想,一般用来指导框架层面的设计。
依赖注入(DI)
接下来,我们再来看依赖注入。依赖注入跟控制反转恰恰相反,它是一种具体的编码技巧。依赖注入的英文翻译是 Dependency Injection,缩写为 DI。对于这个概念,有一个非常形象的说法,那就是:依赖注入是一个标价 25 美元,实际上只值 5 美分的概念。也就是说,这个概念听起来很“高大上”,实际上,理解、应用起来非常简单。
那到底什么是依赖注入呢?我们用一句话来概括就是:不通过 new() 的方式在类内部创建依赖类对象,而是将依赖的类对象在外部创建好之后,通过构造函数、函数参数等方式传递(或注入)给类使用。
我们还是通过一个例子来解释一下。在这个例子中,Notification 类负责消息推送,依赖 MessageSender 类实现推送商品促销、验证码等消息给用户。我们分别用依赖注入和非依赖注入两种方式来实现一下。具体的实现代码如下所示:
// 非依赖注入实现方式
public class Notification {
private MessageSender messageSender;
public Notification() {
this.messageSender = new MessageSender(); //此处有点像hardcode
}
public void sendMessage(String cellphone, String message) {
//...省略校验逻辑等...
this.messageSender.send(cellphone, message);
}
}
public class MessageSender {
public void send(String cellphone, String message) {
//....
}
}
// 使用Notification
Notification notification = new Notification();
// 依赖注入的实现方式
public class Notification {
private MessageSender messageSender;
// 通过构造函数将messageSender传递进来
public Notification(MessageSender messageSender) {
this.messageSender = messageSender;
}
public void sendMessage(String cellphone, String message) {
//...省略校验逻辑等...
this.messageSender.send(cellphone, message);
}
}
//使用Notification
MessageSender messageSender = new MessageSender();
Notification notification = new Notification(messageSender);
通过依赖注入的方式来将依赖的类对象传递进来,这样就提高了代码的扩展性,我们可以灵活地替换依赖的类。这一点在我们之前讲“开闭原则”的时候也提到过。当然,上面代码还有继续优化的空间,我们还可以把 MessageSender 定义成接口,基于接口而非实现编程。改造后的代码如下所示:
public class Notification {
private MessageSender messageSender;
public Notification(MessageSender messageSender) {
this.messageSender = messageSender;
}
public void sendMessage(String cellphone, String message) {
this.messageSender.send(cellphone, message);
}
}
public interface MessageSender {
void send(String cellphone, String message);
}
// 短信发送类
public class SmsSender implements MessageSender {
@Override
public void send(String cellphone, String message) {
//....
}
}
// 站内信发送类
public class InboxSender implements MessageSender {
@Override
public void send(String cellphone, String message) {
//....
}
}
//使用Notification
MessageSender messageSender = new SmsSender();
Notification notification = new Notification(messageSender);
实际上,你只需要掌握刚刚举的这个例子,就等于完全掌握了依赖注入。尽管依赖注入非常简单,但却非常有用,在后面的章节中,我们会讲到,它是编写可测试性代码最有效的手段。
依赖注入框架(DI Framework)
弄懂了什么是“依赖注入”,我们再来看一下,什么是“依赖注入框架”。我们还是借用刚刚的例子来解释。在采用依赖注入实现的 Notification 类中,虽然我们不需要用类似 hard code 的方式,在类内部通过 new 来创建 MessageSender 对象,但是,这个创建对象、组装(或注入)对象的工作仅仅是被移动到了更上层代码而已,还是需要我们程序员自己来实现。具体代码如下所示:
public class Demo {
public static final void main(String args[]) {
MessageSender sender = new SmsSender(); //创建对象
Notification notification = new Notification(sender);//依赖注入
notification.sendMessage("13918942177", "短信验证码:2346");
}
}
在实际的软件开发中,一些项目可能会涉及几十、上百、甚至几百个类,类对象的创建和依赖注入会变得非常复杂。如果这部分工作都是靠程序员自己写代码来完成,容易出错且开发成本也比较高。而对象创建和依赖注入的工作,本身跟具体的业务无关,我们完全可以抽象成框架来自动完成。
你可能已经猜到,这个框架就是“依赖注入框架”。我们只需要通过依赖注入框架提供的扩展点,简单配置一下所有需要创建的类对象、类与类之间的依赖关系,就可以实现由框架来自动创建对象、管理对象的生命周期、依赖注入等原本需要程序员来做的事情。
实际上,现成的依赖注入框架有很多,比如 Google Guice、Java Spring、Pico Container、Butterfly Container 等。不过,如果你熟悉 Java Spring 框架,你可能会说,Spring 框架自己声称是控制反转容器(Inversion Of Control Container)。
实际上,这两种说法都没错。只是控制反转容器这种表述是一种非常宽泛的描述,DI 依赖注入框架的表述更具体、更有针对性。因为我们前面讲到实现控制反转的方式有很多,除了依赖注入,还有模板模式等,而 Spring 框架的控制反转主要是通过依赖注入来实现的。不过这点区分并不是很明显,也不是很重要,你稍微了解一下就可以了。
依赖反转原则(DIP)
前面讲了控制反转、依赖注入、依赖注入框架,现在,我们来讲一讲今天的主角:依赖反转原则。依赖反转原则的英文翻译是 Dependency Inversion Principle,缩写为 DIP。中文翻译有时候也叫依赖倒置原则。
为了追本溯源,我先给出这条原则最原汁原味的英文描述:
High-level modules shouldn’t depend on low-level modules. Both modules should depend on abstractions. In addition, abstractions shouldn’t depend on details. Details depend on abstractions.
我们将它翻译成中文,大概意思就是:高层模块(high-level modules)不要依赖低层模块(low-level)。高层模块和低层模块应该通过抽象(abstractions)来互相依赖。除此之外,抽象(abstractions)不要依赖具体实现细节(details),具体实现细节(details)依赖抽象(abstractions)。
所谓高层模块和低层模块的划分,简单来说就是,在调用链上,调用者属于高层,被调用者属于低层。在平时的业务代码开发中,高层模块依赖底层模块是没有任何问题的。实际上,这条原则主要还是用来指导框架层面的设计,跟前面讲到的控制反转类似。我们拿 Tomcat 这个 Servlet 容器作为例子来解释一下。
Tomcat 是运行 Java Web 应用程序的容器。我们编写的 Web 应用程序代码只需要部署在 Tomcat 容器下,便可以被 Tomcat 容器调用执行。按照之前的划分原则,Tomcat 就是高层模块,我们编写的 Web 应用程序代码就是低层模块。Tomcat 和应用程序代码之间并没有直接的依赖关系,两者都依赖同一个“抽象”,也就是 Servlet 规范。Servlet 规范不依赖具体的 Tomcat 容器和应用程序的实现细节,而 Tomcat 容器和应用程序依赖 Servlet 规范。
- 控制反转
实际上,控制反转是一个比较笼统的设计思想,并不是一种具体的实现方法,一般用来指导框架层面的设计。这里所说的“控制”指的是对程序执行流程的控制,而“反转”指的是在没有使用框架之前,程序员自己控制整个程序的执行。在使用框架之后,整个程序的执行流程通过框架来控制。流程的控制权从程序员“反转”给了框架。 - 依赖注入
依赖注入和控制反转恰恰相反,它是一种具体的编码技巧。我们不通过 new 的方式在类内部创建依赖类的对象,而是将依赖的类对象在外部创建好之后,通过构造函数、函数参数等方式传递(或注入)给类来使用。 - 依赖注入框架
我们通过依赖注入框架提供的扩展点,简单配置一下所有需要的类及其类与类之间依赖关系,就可以实现由框架来自动创建对象、管理对象的生命周期、依赖注入等原本需要程序员来做的事情。 - 依赖反转原则
依赖反转原则也叫作依赖倒置原则。这条原则跟控制反转有点类似,主要用来指导框架层面的设计。高层模块不依赖低层模块,它们共同依赖同一个抽象。抽象不要依赖具体实现细节,具体实现细节依赖抽象。
“基于接口而非实现编程”与“依赖注入”的联系是二者都是从外部传入依赖对象而不是在内部去new一个出来。
区别是“基于接口而非实现编程”强调的是“接口”,强调依赖的对象是接口,而不是具体的实现类;而“依赖注入”不强调这个,类或接口都可以,只要是从外部传入不是在内部new出来都可以称为依赖注入。
区别:
1.依赖注入是一种具体编程技巧,关注的是对象创建和类之间关系,目的提高了代码的扩展性,我们可以灵活地替换依赖的类。
2.基于接口而非实现编程是一种设计原则,关注抽象和实现,上下游调用稳定性,目的是降低耦合性,提高扩展性。
联系:
都是基于开闭原则思路,提高代码扩展性!
依赖倒置原则概念是高层次模块不依赖于低层次模块。看似在要求高层次模块,实际上是在规范低层次模块的设计。
低层次模块提供的接口要足够的抽象、通用,在设计时需要考虑高层次模块的使用种类和场景。
明明是高层次模块要使用低层次模块,对低层次模块有依赖性。现在反而低层次模块需要根据高层次模块来设计,出现了「倒置」的显现。
这样设计好处有两点:
- 低层次模块更加通用,适用性更广
- 高层次模块没有依赖低层次模块的具体实现,方便低层次模块的替换
思考题:
基于接口而非实现编程,是一种指导编码的思想。依赖注入是它的一种具体应用
1⃣️控制反转是一种编程思想,把控制权交给第三方。依赖注入是实现控制反转最典型的方法。
2⃣️依赖注入(对象)的方式要采用“基于接口而非实现编程”的原则,说白了就是依赖倒转。
3⃣️低层的实现要符合里氏替换原则。子类的可替换性,使得父类模块或依赖于抽象的高层模块无需修改,实现程序的可扩展性。