zoukankan      html  css  js  c++  java
  • hdu3371 Connect the Cities

    Connect the Cities

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6362    Accepted Submission(s): 1838

    Problem Description
    In 2100, since the sea level rise, most of the cities disappear. Though some survived cities are still connected with others, but most of them become disconnected. The government wants to build some roads to connect all of these cities again, but they don’t want to take too much money.  
     

    Input
    The first line contains the number of test cases.
    Each test case starts with three integers: n, m and k. n (3 <= n <=500) stands for the number of survived cities, m (0 <= m <= 25000) stands for the number of roads you can choose to connect the cities and k (0 <= k <= 100) stands for the number of still connected cities.
    To make it easy, the cities are signed from 1 to n.
    Then follow m lines, each contains three integers p, q and c (0 <= c <= 1000), means it takes c to connect p and q.
    Then follow k lines, each line starts with an integer t (2 <= t <= n) stands for the number of this connected cities. Then t integers follow stands for the id of these cities.
     

    Output
    For each case, output the least money you need to take, if it’s impossible, just output -1.
     

    Sample Input
    1 6 4 3 1 4 2 2 6 1 2 3 5 3 4 33 2 1 2 2 1 3 3 4 5 6
     

    Sample Output
    1
     
    还是kruskal算法。题意就是已经有些点连到一起了,就是有的边和点不考虑了,在剩下的边里面选。注意,可能出现不是联通分量的情况。直接拿另外一道题目改改就AC了。题目链接继续畅通工程
    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int MAX=55000;
    struct Edge
    {
    	int vex1;
    	int vex2;
    	int weight;
    };
    int vset[MAX];
    bool operator <(const Edge&E1,const Edge&E2)
    {
    	return E1.weight<E2.weight;
    }
    int GetParent(int i)//路径压缩的并查集啦
    {
    	if(vset[i]!=i)
    		vset[i]=GetParent(vset[i]);
    	return vset[i];
    }
    void kruskal(Edge E[],int m,int e)
    {
    	int sum=0;
    	for(int j=0;j<m;j++)
    	{
    		int p1=GetParent(E[j].vex1);
    		int p2=GetParent(E[j].vex2);
    		if(p1!=p2)
    		{
    			sum+=E[j].weight;
    			vset[p2]=p1;
    			e--;
    		}
    	}
    	if(!e)//判断边数是否为0,若为0则表示所有边都找到了。否则的话,就不是连通图了。输出-1
    		printf("%d
    ",sum);
    	else
    		printf("-1
    ");
    }
    int main()
    {
    	int c;
    	scanf("%d",&c);
    	while(c--)
    	{
    		int n,m,k;
    		int v1,v2,dist;
    		int i;
    		Edge E[MAX];
    		scanf("%d%d%d",&n,&m,&k);
    		int e=n-1;//构成最小生成树所需边数
    		for(i=1;i<=n;i++)
    			vset[i]=i;
    		for(i=0;i<m;i++)
    		{
    			scanf("%d%d%d",&v1,&v2,&dist);
    			E[i].vex1=v1;
    			E[i].vex2=v2;
    			E[i].weight=dist;
    		}
    		int t,p1,p2;
    		for(i=0;i<k;i++)
    		{
    			scanf("%d",&t);
    			scanf("%d",&v1);
    			p1=GetParent(v1);
    			while(--t)//注意不是t--两者循环次数差1次
    			{
    				scanf("%d",&v2);
    				p2=GetParent(v2);
    				if(p1==p2)
    					continue;
    				vset[p2]=p1;
    				e--;//联通两个点之后,即找到了一条生成树的边。所以还剩下的边减一条。
    			}
    		}
    		sort(E,E+m);
    		kruskal(E,m,e);
    	}
    	return 0;
    }


  • 相关阅读:
    阿里云 NAS OSS 云盘价格对比 GB/小时
    kubernetes/k8s pod下多容器的设计模式(ambassador 大使代理模式,adapter 适配模式,sidecar 边车模式, init containers初始化容器)
    ❤️ 从125ms到11ms,记一次关键字检测过滤服务的优化 -python and Pythonnet
    高效的的关键字查找和检测(哈希表和Trie前缀树和FastCheck)在实际使用中的性能
    FastAPI 中的Async (并发和async/await)
    阿里云vs华为云 的容器镜像服务swr使用体验
    Supermap IClient3D 加载3DTiles倾斜摄影数据
    C#根据数据生成力引导图
    Android WebView
    Nginx 反向代理地址后,session丢失,不能登录的问题
  • 原文地址:https://www.cnblogs.com/unclejelly/p/4082148.html
Copyright © 2011-2022 走看看