继承类:AbstractMap
实现接口:Map、Cloneable
Map:将key-value映射为对象,接口取代了Dictionary类,
AbstractMap实现了Map,减少实现Map接口时的工作量
Cloneable实现此接口的类可以进行拷贝操作
重要说明:
1、异或操作:
x是二进制数0101,y是二进制数1011;
则x ^ y=1110
2、每个键值对Node节点的hashCode=Objects.hashCode(key) ^ Objects.hashCode(value);(异或操作)
3、判断两个键值Node节点相等的条件为:
如果Node<K,V> A == Node<K,V> B,则返回true
如果A节点继承了Map.Entry接口,并且A.key.equals(B.key) 并且A.value.equals(B.value) ,则返回true
代码翻译:
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { 初始大小16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 最大容量2的30次方 static final int MAXIMUM_CAPACITY = 1 << 30; 容量扩大因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; 哈希节点,节点中保存了key、value、hash、next节点值 static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } 根据key计算hash值 static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } /** * Returns a power of two size for the given target capacity. */ static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /* ---------------- Fields -------------- */ 初始化数组 transient Node<K,V>[] table; 已Set结构保存每个Map.Entry<K,V>节点 transient Set<Map.Entry<K,V>> entrySet; Map大小 transient int size; Map修改次数 transient int modCount; size=(capacity * load factor) int threshold; 哈希表的增长因子 final float loadFactor; 根据初始化容量以及增长因子构建空的HasHMap, public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } 构建空的HasHMap, public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } 构建空的HasHMap,增长因子=0.75 public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } 将指定Map对象保存到已存在的HashMap public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } 将指定Map对象保存到已存在的HashMap final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { int s = m.size(); if (s > 0) { if (table == null) { // pre-size float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); if (t > threshold) threshold = tableSizeFor(t); } else if (s > threshold) resize(); for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } } 返回指定key的value或者返回null public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } hash相同并且key相等,则返回Node节点 先获得table数组,从数组0开始遍历, 判断每个数组的hash值与传入的hash是否相等(优先判断),并且key相等,则数组节点 final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } //根据保存key与value,如果key已经存在,则value替换oldvalue public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } 根据public V put(K key, V value)方法调用putVal(hash(key), key, value, false, true)进行说明 //保存key与value,对传入参数进一步说明: hash:key的hash值 key:key值 value:key对应的需要保存的值 onlyIfAbsent:如果为true,表示已经存在key,则不替换oldvalue,如果为false,表示如果key已经存在,可以使用newValue替换oldValue evict:(先不考虑) final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //数组对象为空,或者数组长度为0,设置新数组的长度 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //key,value、hash创建Node节点,设置在tab[i]数组上 //上一步骤n = tab.length中,n获得了当前数组的长度, //如果table数据为空或者长度为0,则会根据调用resize()重新初始化一个数组 //如果根据hash在数组上找不到索引,则新建一个NewNode节点,并把NewNode节点复制到数组节点上 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; //如果hash、key都相等,则设置e节点=数组中p节点 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) //如果p节点是TreeNode类型的节点,则调用TreeNode类下的putTreeVal方法进行设置key、value e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { //如果p节点即不是数组上的节点,也不是TreeNode类型的节点,表示p为数组链表中的节点, //循环数组后的链表,查找要找的节点(hash、key都相等的节点) for (int binCount = 0; ; ++binCount) { //如果最后节点的next为空,表示没有其他节点了,则新建一个newNode节点 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //如果查找到了hash、key都相等的节点,则把查找到的节点e复制给p节点 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } 重新设置数组大小 final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; //获得原有数组长度 int oldCap = (oldTab == null) ? 0 : oldTab.length; //获得 临界值 int oldThr = threshold; int newCap, newThr = 0; //如果临界值大于0,则新的数组长度等于临界值 if (oldCap > 0) { //如果原数组长度大于0,并且原数组长度>(1 << 30),则返回原数组长度,同时临界值设置为Integer.MAX_VALUE if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } //如果原数组长度大于0,并且原数组长度*2 小于Integer.MAX_VALUE 并且 原数组长度大于默认长度16(1<<4),则设置新的数组长度为原数组长度*2 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults //如果以上都不符合,则新的数组长度为10,新的临界值为默认长度10 * 默认因子0.75 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } //如果新的临界值==0,则如果新的数组长度小于Integer.MAX_VALUE并且 新的数组长度*默认因子小于Integer.MAX_VALUE,则新的临界值设置为新的数组长度*默认因子,否则设置为nteger.MAX_VALUE if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) //根据新的数组长度定义数组 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; //设置数组上的节点 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order // Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; //这个逻辑不会触发,如果(e.hash & oldCap) == 0为true,则oldCap=0,表示数组为空 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { //按顺序把原数组节点中每个链表都复制到新数组每个节点的链表 if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } /** * Replaces all linked nodes in bin at index for given hash unless * table is too small, in which case resizes instead. */ final void treeifyBin(Node<K,V>[] tab, int hash) { int n, index; Node<K,V> e; if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize(); else if ((e = tab[index = (n - 1) & hash]) != null) { TreeNode<K,V> hd = null, tl = null; do { TreeNode<K,V> p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } } 根据执行key删除节点对象 public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } 具体说明 public V remove(Object key)方法调用时传递的参数:removeNode(hash(key), key, null, false, true) 根据具体的节点信息删除Node 传入参数说明: hash:key的hash值 key:key值 value:如果matchValue=true,则删除时需要匹配value与根据key和hash取出的value相等才删除 matchValue:控制是否匹配value,如果为true,则value相等则删除 movable:如果为false时,删除时不移动其他节点,如果为true,则删除节点时需要移动其他节点 final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; //获取hash获得数组对应的节点判断hash、key是否相等,如果相等则把查找到的节点复制给node if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { //如果节点是TreeNode类型的对象,根据hash和key获得TreeNode节点信息,把查找到的节点复制给node if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { //如果不相等则进行do while循环判断,如果相等则把查找到的节点复制给node do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } 如果查找到的节点不为空,在根据参数matchValue来控制是否需要进行值的校验 if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode)//针对查找的node是TreeNode类型的节点,则使用TreeNode下的removeTreeNode方法删除节点 ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p)//针对查找到的node节点 等于 数组节点的情况 //如果查找到的node节点 等于 数组节点,则把数组节点设置为node节点的下一个节点 tab[index] = node.next; else //如果不是以上两种情况,则p的next节点设置为node的next节点,这样node节点就不在数组节点后的链表中了 p.next = node.next; ++modCount;//HashMap操作次数加一 --size;//HashMap数量减一 afterNodeRemoval(node);// return node;//返回被删除节点,如果没有则返回null } } return null; } //清空table数组 public void clear() { Node<K,V>[] tab; modCount++; if ((tab = table) != null && size > 0) { size = 0; for (int i = 0; i < tab.length; ++i) tab[i] = null; } } 根据key、value必须与HashMap中完全匹配才可以删除节点数据数据 public boolean remove(Object key, Object value) { return removeNode(hash(key), key, value, true, true) != null; } 克隆HashMap的镜像,值不会克隆 @SuppressWarnings("unchecked") @Override public Object clone() { HashMap<K,V> result; try { result = (HashMap<K,V>)super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } result.reinitialize(); result.putMapEntries(this, false); return result; } }