zoukankan      html  css  js  c++  java
  • Java 并发进阶常见面试题总结

    1.2. 说说自己是怎么使用 synchronized 关键字,在项目中用到了吗

    synchronized关键字最主要的三种使用方式:

    • 修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁
    • 修饰静态方法: :也就是给当前类加锁,会作用于类的所有对象实例,因为静态成员不属于任何一个实例对象,是类成员( static 表明这是该类的一个静态资源,不管new了多少个对象,只有一份)。所以如果一个线程A调用一个实例对象的非静态 synchronized 方法,而线程B需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。
    • 修饰代码块: 指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。

    总结: synchronized 关键字加到 static 静态方法和 synchronized(class)代码块上都是是给 Class 类上锁。synchronized 关键字加到实例方法上是给对象实例上锁。尽量不要使用 synchronized(String a) 因为JVM中,字符串常量池具有缓存功能!

    双重校验锁实现对象单例(线程安全)

    public class Singleton {
    
        private volatile static Singleton uniqueInstance;
    
        private Singleton() {
        }
    
        public static Singleton getUniqueInstance() {
           //先判断对象是否已经实例过,没有实例化过才进入加锁代码
            if (uniqueInstance == null) {
                //类对象加锁
                synchronized (Singleton.class) {
                    if (uniqueInstance == null) {
                        uniqueInstance = new Singleton();
                    }
                }
            }
            return uniqueInstance;
        }
    }

    ① synchronized 同步语句块的情况

    synchronized 同步语句块的实现使用的是 monitorenter 和 monitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。 当执行 monitorenter 指令时,线程试图获取锁也就是获取 monitor(monitor对象存在于每个Java对象的对象头中,synchronized 锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因) 的持有权。当计数器为0则可以成功获取,获取后将锁计数器设为1也就是加1。相应的在执行 monitorexit 指令后,将锁计数器设为0,表明锁被释放。如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。

    1.5. 谈谈 synchronized和ReentrantLock 的区别

    ① 两者都是可重入锁

    两者都是可重入锁。“可重入锁”概念是:自己可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果不可锁重入的话,就会造成死锁。同一个线程每次获取锁,锁的计数器都自增1,所以要等到锁的计数器下降为0时才能释放锁。

    ② synchronized 依赖于 JVM 而 ReentrantLock 依赖于 API

    synchronized 是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。ReentrantLock 是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。

    ③ ReentrantLock 比 synchronized 增加了一些高级功能

    相比synchronized,ReentrantLock增加了一些高级功能。主要来说主要有三点:①等待可中断;②可实现公平锁;③可实现选择性通知(锁可以绑定多个条件)

    • ReentrantLock提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。
    • ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。 ReentrantLock默认情况是非公平的,可以通过 ReentrantLock类的ReentrantLock(boolean fair)构造方法来制定是否是公平的。
    • synchronized关键字与wait()和notify()/notifyAll()方法相结合可以实现等待/通知机制,ReentrantLock类当然也可以实现,但是需要借助于Condition接口与newCondition() 方法。Condition是JDK1.5之后才有的,它具有很好的灵活性,比如可以实现多路通知功能也就是在一个Lock对象中可以创建多个Condition实例(即对象监视器),线程对象可以注册在指定的Condition中,从而可以有选择性的进行线程通知,在调度线程上更加灵活。 在使用notify()/notifyAll()方法进行通知时,被通知的线程是由 JVM 选择的,用ReentrantLock类结合Condition实例可以实现“选择性通知” ,这个功能非常重要,而且是Condition接口默认提供的。而synchronized关键字就相当于整个Lock对象中只有一个Condition实例,所有的线程都注册在它一个身上。如果执行notifyAll()方法的话就会通知所有处于等待状态的线程这样会造成很大的效率问题,而Condition实例的signalAll()方法 只会唤醒注册在该Condition实例中的所有等待线程。

    2. volatile关键字

    2.1. 讲一下Java内存模型

    在 JDK1.2 之前,Java的内存模型实现总是从主存(即共享内存)读取变量,是不需要进行特别的注意的。而在当前的 Java 内存模型下,线程可以把变量保存本地内存比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致。

    要解决这个问题,就需要把变量声明为volatile,这就指示 JVM,这个变量是不稳定的,每次使用它都到主存中进行读取。

    说白了, volatile 关键字的主要作用就是保证变量的可见性然后还有一个作用是防止指令重排序。

     

    2.2. 说说 synchronized 关键字和 volatile 关键字的区别

    synchronized关键字和volatile关键字比较

    • volatile关键字是线程同步的轻量级实现,所以volatile性能肯定比synchronized关键字要好。但是volatile关键字只能用于变量而synchronized关键字可以修饰方法以及代码块。synchronized关键字在JavaSE1.6之后进行了主要包括为了减少获得锁和释放锁带来的性能消耗而引入的偏向锁和轻量级锁以及其它各种优化之后执行效率有了显著提升,实际开发中使用 synchronized 关键字的场景还是更多一些。
    • 多线程访问volatile关键字不会发生阻塞,而synchronized关键字可能会发生阻塞
    • volatile关键字能保证数据的可见性,但不能保证数据的原子性。synchronized关键字两者都能保证。
    • volatile关键字主要用于解决变量在多个线程之间的可见性,而 synchronized关键字解决的是多个线程之间访问资源的同步性。

    3.1. ThreadLocal简介

    通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢? JDK中提供的ThreadLocal类正是为了解决这样的问题。 ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。

    如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal变量名的由来。他们可以使用 get() 和 set() 方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。

    3.3. ThreadLocal原理

    从 Thread类源代码入手。

    public class Thread implements Runnable {
     ......
    //与此线程有关的ThreadLocal值。由ThreadLocal类维护
    ThreadLocal.ThreadLocalMap threadLocals = null;
    
    //与此线程有关的InheritableThreadLocal值。由InheritableThreadLocal类维护
    ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
     ......
    }

    从上面Thread类 源代码可以看出Thread 类中有一个 threadLocals 和 一个 inheritableThreadLocals 变量,它们都是 ThreadLocalMap 类型的变量,我们可以把 ThreadLocalMap 理解为ThreadLocal 类实现的定制化的 HashMap。默认情况下这两个变量都是null,只有当前线程调用 ThreadLocal 类的 setget方法时才创建它们,实际上调用这两个方法的时候,我们调用的是ThreadLocalMap类对应的 get()set()方法。

    ThreadLocal类的set()方法

     public void set(T value) {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
        }
        ThreadLocalMap getMap(Thread t) {
            return t.threadLocals;
        }

    通过上面这些内容,我们足以通过猜测得出结论:最终的变量是放在了当前线程的 ThreadLocalMap 中,并不是存在 ThreadLocal 上,ThreadLocal 可以理解为只是ThreadLocalMap的封装,传递了变量值。 ThrealLocal 类中可以通过Thread.currentThread()获取到当前线程对象后,直接通过getMap(Thread t)可以访问到该线程的ThreadLocalMap对象。

    每个Thread中都具备一个ThreadLocalMap,而ThreadLocalMap可以存储以ThreadLocal为key的键值对。 比如我们在同一个线程中声明了两个 ThreadLocal 对象的话,会使用 Thread内部都是使用仅有那个ThreadLocalMap 存放数据的,ThreadLocalMap的 key 就是 ThreadLocal对象,value 就是 ThreadLocal 对象调用set方法设置的值。ThreadLocal 是 map结构是为了让每个线程可以关联多个 ThreadLocal变量。这也就解释了 ThreadLocal 声明的变量为什么在每一个线程都有自己的专属本地变量。

    4.1. 为什么要用线程池?

    线程池提供了一种限制和管理资源(包括执行一个任务)。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。

    这里借用《Java并发编程的艺术》提到的来说一下使用线程池的好处:

    • 降低资源消耗。 通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
    • 提高响应速度。 当任务到达时,任务可以不需要的等到线程创建就能立即执行。
    • 提高线程的可管理性。 线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

    4.4. 如何创建线程池

    方式一:通过ThreadPoolExecutor构造方法实现

    package java_guide;
    
    import java.util.concurrent.ArrayBlockingQueue;
    import java.util.concurrent.BlockingQueue;
    import java.util.concurrent.ThreadPoolExecutor;
    import java.util.concurrent.TimeUnit;
    
    public class ThreadPoolTest {
        public static void main(String[] args) {
            BlockingQueue blockingQueue = new ArrayBlockingQueue(20);
            ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 15,
                    60, TimeUnit.SECONDS, blockingQueue);
            for (int i = 0; i < 30; i++) {
                threadPoolExecutor.execute(new TaskWithoutResult(1000));
            }
            threadPoolExecutor.shutdown();
        }
    }
    
    
    class TaskWithoutResult implements Runnable {
        private int sleepTime = 1000;//默认睡眠时间1s
    
        public TaskWithoutResult(int sleepTime) {
            this.sleepTime = sleepTime;
        }
    
        @Override
        public void run() {
            System.out.println("线程" + Thread.currentThread() + "开始运行");
            try {
                Thread.sleep(sleepTime);
            } catch (InterruptedException e) {//捕捉中断异常
    
                System.out.println("线程" + Thread.currentThread() + "被中断");
            }
            System.out.println("线程" + Thread.currentThread() + "结束运行");
        }
    }
    View Code

    方式二:通过Executor 框架的工具类Executors来实现 我们可以创建三种类型的ThreadPoolExecutor:

    • FixedThreadPool : 该方法返回一个固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。
    • SingleThreadExecutor: 方法返回一个只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。
    • CachedThreadPool: 该方法返回一个可根据实际情况调整线程数量的线程池。线程池的线程数量不确定,但若有空闲线程可以复用,则会优先使用可复用的线程。若所有线程均在工作,又有新的任务提交,则会创建新的线程处理任务。所有线程在当前任务执行完毕后,将返回线程池进行复用。

    5.1. 介绍一下Atomic 原子类

    Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学反应中是不可分割的。在我们这里 Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。

    所以,所谓原子类说简单点就是具有原子/原子操作特征的类。

    并发包 java.util.concurrent 的原子类都存放在java.util.concurrent.atomic下,如下图所示。

    5.2. JUC 包中的原子类是哪4类?

    基本类型

    使用原子的方式更新基本类型

    • AtomicInteger:整形原子类
    • AtomicLong:长整型原子类
    • AtomicBoolean:布尔型原子类

    数组类型

    使用原子的方式更新数组里的某个元素

    • AtomicIntegerArray:整形数组原子类
    • AtomicLongArray:长整形数组原子类
    • AtomicReferenceArray:引用类型数组原子类

    引用类型

    • AtomicReference:引用类型原子类
    • AtomicStampedReference:原子更新引用类型里的字段原子类
    • AtomicMarkableReference :原子更新带有标记位的引用类型

    对象的属性修改类型

    • AtomicIntegerFieldUpdater:原子更新整形字段的更新器
    • AtomicLongFieldUpdater:原子更新长整形字段的更新器
    • AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。

    AtomicInteger 类常用方法

    public final int get() //获取当前的值
    public final int getAndSet(int newValue)//获取当前的值,并设置新的值
    public final int getAndIncrement()//获取当前的值,并自增
    public final int getAndDecrement() //获取当前的值,并自减
    public final int getAndAdd(int delta) //获取当前的值,并加上预期的值
    boolean compareAndSet(int expect, int update) //如果输入的数值等于预期值,则以原子方式将该值设置为输入值(update)
    public final void lazySet(int newValue)//最终设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。
    class AtomicIntegerTest {
            private AtomicInteger count = new AtomicInteger();
          //使用AtomicInteger之后,不需要对该方法加锁,也可以实现线程安全。
            public void increment() {
                      count.incrementAndGet();
            }
    
           public int getCount() {
                    return count.get();
            }
    }
  • 相关阅读:
    Windows环境安装tesseract-ocr 4.00并配置环境变量
    python问题集
    使用CefSharp在.Net程序中嵌入Chrome浏览器(八)——Cookie
    python虛擬環境和工具
    pycharm使用(持续更新)
    醒过来的都市
    下一个十年计划6-作品
    下一个十年计划5-方向选择
    下一个十年计划4-反向选择
    负逻辑的实际应用
  • 原文地址:https://www.cnblogs.com/ustc-anmin/p/11591904.html
Copyright © 2011-2022 走看看