zoukankan      html  css  js  c++  java
  • codeforces #601 (div 1) 做题记录

    A.

    显然构造一个蛇形就行了

    复杂度(O(r*c))

     1 #include<bits/stdc++.h>
     2 #define ll long long
     3 #define ull unsigned long long
     4 #define pii pair<int,int>
     5 #define pll pair<long long,long long>
     6 #define mpr(a,b) make_pair(a,b) 
     7 #define maxn 105
     8 using namespace std;
     9 ll gcd(ll a,ll b){if(!b)return a;return gcd(b,a%b);}
    10 ll fastpow(ll a,ll p,ll mod)
    11 {
    12     ll ans=1;
    13     while(p)
    14     {
    15         if(p&1)ans=ans*a%mod;
    16         a=a*a%mod;p>>=1;
    17     }
    18     return ans;
    19 }
    20 ll inv(ll x,ll mod){return fastpow(x,mod-2,mod);} 
    21 int T,n,m,k;
    22 char a[maxn][maxn];
    23 int Ans[maxn][maxn];
    24 int nx[maxn][maxn],ny[maxn][maxn];
    25 char ID(int x)
    26 {
    27     if(1<=x&&x<=26)return x-1+'a';
    28     if(27<=x&&x<=52)return x-27+'A';
    29     if(53<=x&&x<=62)return x-53+'0';
    30 }
    31 int main()
    32 {
    33     scanf("%d",&T);
    34     while(T--)
    35     {
    36         scanf("%d%d%d",&n,&m,&k);
    37         for(int i=0;i<=n+1;++i)
    38             for(int j=0;j<=m+1;++j)nx[i][j]=ny[i][j]=Ans[i][j]=0;
    39         for(int i=1;i<=n;++i)
    40         {
    41             for(int j=1;j<=m;++j)nx[i][j]=i,ny[i][j]=(i&1)?j+1:j-1;
    42             if(i&1)nx[i][m]=i+1,ny[i][m]=m;
    43             else nx[i][1]=i+1,ny[i][1]=1;
    44         }
    45         for(int i=1;i<=n;++i)scanf("%s",a[i]+1);
    46         int num=0;
    47         for(int i=1;i<=n;++i)
    48             for(int j=1;j<=m;++j)if(a[i][j]=='R')num++;
    49         int t=num/k;
    50         int k1=num-t*k;
    51         int k2=k-k1;
    52         int nowx=1,nowy=1;
    53         for(int p=1;p<=k1;++p)
    54         {
    55             int cnt=0;
    56             while(cnt<t+1)
    57             {
    58                 Ans[nowx][nowy]=p;
    59                 if(a[nowx][nowy]=='R')cnt++;
    60                 int xx=nx[nowx][nowy],yy=ny[nowx][nowy];
    61                 nowx=xx,nowy=yy;
    62             }
    63         }
    64         for(int p=k1+1;p<=k1+k2;++p)
    65         {
    66             int cnt=0;
    67             while(cnt<t)
    68             {
    69                 Ans[nowx][nowy]=p;
    70                 if(a[nowx][nowy]=='R')cnt++;
    71                 int xx=nx[nowx][nowy],yy=ny[nowx][nowy];
    72                 nowx=xx,nowy=yy;
    73             } 
    74         }
    75         while(nowx&&nowy)
    76         {
    77             Ans[nowx][nowy]=k1+k2;
    78             int xx=nx[nowx][nowy],yy=ny[nowx][nowy];
    79             nowx=xx,nowy=yy;
    80         }
    81         for(int i=1;i<=n;++i)
    82         { 
    83             for(int j=1;j<=m;++j)printf("%c",ID(Ans[i][j]));
    84             puts("");
    85         } 
    86     }
    87 }
    View Code

    B.

    设总和为(tot),则我们考虑枚举(tot)的约数,然后check

    假设这个约数是(k)

    check做法:先把每个数 ( mod k),然后把一段一段和为(k)的段抠出来

    然后枚举移动到的位置,取最优

    这样B1就做完了,复杂度(O(n*d(w)))

    然后发现B2的(tot)太大,约数太多,因此我们只需要考虑枚举其质因子即可

    复杂度(O(n log w))

     1 #include<bits/stdc++.h>
     2 #define ll long long
     3 #define ull unsigned long long
     4 #define pii pair<int,int>
     5 #define pll pair<long long,long long>
     6 #define mpr(a,b) make_pair(a,b)
     7 using namespace std;
     8 ll gcd(ll a,ll b){if(!b)return a;return gcd(b,a%b);}
     9 ll fastpow(ll a,ll p,ll mod)
    10 {
    11     ll ans=1;
    12     while(p)
    13     {
    14         if(p&1)ans=ans*a%mod;
    15         a=a*a%mod;p>>=1;
    16     }
    17     return ans;
    18 }
    19 ll inv(ll x,ll mod){return fastpow(x,mod-2,mod);}
    20 #define maxn 1000005 
    21 int n;
    22 ll tot,a[maxn],ans;
    23 ll b[maxn],c[maxn];
    24 void check(ll k)
    25 {
    26     ll res=0,tt=0;
    27     vector<pll> v;
    28     for(int i=1;i<=n;++i)b[i]=a[i]%k,tt+=b[i],c[i]=b[i];
    29     ll K=tt/k;
    30     int j=1;
    31     for(int i=1;i<=K;++i)
    32     {
    33         v.clear();
    34         ll sx=0,sy=0,num=0;
    35         while(j<=n&&num<=k)
    36         {
    37             if(b[j]>0)
    38             {
    39                 ll tmp=min(b[j],k-num);
    40                 v.push_back(mpr(j,tmp)),sy+=j*tmp,num+=tmp;
    41                 b[j]-=tmp;
    42             }
    43             if(num==k)break;
    44             j++;
    45         }
    46         ll t=(ll)5e18;
    47         if(v.size())
    48         {
    49             ll s=0;
    50             for(int p=0;p<v.size();++p)
    51             {
    52                 ll pos=v[p].first;
    53                 t=min(t,1ll*pos*s-sx+sy-1ll*(k-s)*pos);
    54                 sx+=pos*v[p].second;sy-=pos*v[p].second;
    55                 s+=v[p].second;
    56             }
    57             res+=t;
    58         }
    59     }
    60     ans=min(ans,res);
    61 }
    62 int main()
    63 {
    64     scanf("%d",&n);
    65     for(int i=1;i<=n;++i)scanf("%I64d",&a[i]),tot+=a[i];
    66     if(tot==1)
    67     {
    68         puts("-1");
    69         return 0;
    70     }
    71     ans=(ll)5e18;
    72     ll x=tot;
    73     for(ll i=2;i*i<=tot;++i)if(x%i==0)
    74     {
    75         while(x%i==0)x/=i;
    76         check(i);
    77     }
    78     if(x>1)check(x);
    79     cout<<ans<<endl;
    80 }
    View Code

    C.

    固定1,2两个点,然后利用(n)次叉积问出其他点在((1,2))这条线的哪一侧

    然后再用(n)次面积问出两边最大面积点

    最后问每个点在最大面积点的哪边,然后sort一下就可以了

     1 #include<bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 int n;
     5 vector<ll> A,B;
     6 ll s[1005];
     7 vector<ll> X,Y,Z,W;
     8 ll ask(ll t,ll i,ll j,ll k)
     9 {
    10     ll x;
    11     cout<<t<<" "<<i<<" "<<j<<" "<<k<<endl;
    12     fflush(stdout);
    13     cin>>x;
    14     return x;
    15 }
    16 bool cmp1(int x,int y)
    17 {
    18     return s[x]<s[y];
    19 }
    20 bool cmp2(int x,int y)
    21 {
    22     return s[x]>s[y];
    23 }
    24 int main()
    25 {
    26     cin>>n;
    27     for(int i=3;i<=n;++i)
    28     {
    29         ll x=ask(2,1,i,2);
    30         if(x>0)A.push_back(i);
    31         else B.push_back(i);
    32     }
    33     ll ida=0,sa=0,idb=0,sb=0;
    34     for(ll x:A)
    35     {
    36         ll y=ask(1,1,x,2);
    37         s[x]=y;
    38         if(y>sa)ida=x,sa=y;
    39     }
    40     for(ll x:B)
    41     {
    42         ll y=ask(1,1,x,2);
    43         s[x]=y;
    44         if(y>sb)idb=x,sb=y;
    45     }
    46     for(ll x:A)if(x!=ida)
    47     {
    48         ll y=ask(2,1,x,ida);
    49         if(y<0)Y.push_back(x);
    50         else X.push_back(x);
    51     }
    52     for(ll x:B)if(x!=idb)
    53     {
    54         ll y=ask(2,1,x,idb);
    55         if(y<0)W.push_back(x);
    56         else Z.push_back(x);
    57     }
    58     sort(X.begin(),X.end(),cmp1);
    59     sort(Y.begin(),Y.end(),cmp2);
    60     sort(Z.begin(),Z.end(),cmp1);
    61     sort(W.begin(),W.end(),cmp2);
    62     cout<<0<<" ";
    63     cout<<1<<" ";
    64     for(ll x:X)cout<<x<<" ";
    65     if(ida)cout<<ida<<" ";
    66     for(ll x:Y)cout<<x<<" ";
    67     cout<<2<<" ";
    68     for(ll x:Z)cout<<x<<" ";
    69     if(idb)cout<<idb<<" ";
    70     for(ll x:W)cout<<x<<" ";
    71 }
    View Code

    D.

    考虑一种暴力做法:

    对于修改操作,对点(u)枚举和他相邻的点(v),那么就是这个子树(subtree(v))加(frac{(n-size[v])}{n}*d)

    然后我们考虑提出根之后就是dfs序上一段区间加,可以线段树维护

    但是这个在点度数大的时候会GG

    那么考虑Bigsmall

    把大度数的点当做关键点,这些点不用线段树维护,暴力打标记

    然后暴力爬关键点统计标记

      1 #include<bits/stdc++.h>
      2 #define ll long long
      3 #define ull unsigned long long
      4 #define pii pair<int,int>
      5 #define pll pair<long long,long long>
      6 #define mpr(a,b) make_pair(a,b)
      7 #define maxn 300005
      8 using namespace std;
      9 ll gcd(ll a,ll b){if(!b)return a;return gcd(b,a%b);}
     10 ll fastpow(ll a,ll p,ll mod)
     11 {
     12     ll ans=1;
     13     while(p)
     14     {
     15         if(p&1)ans=ans*a%mod;
     16         a=a*a%mod;p>>=1;
     17     }
     18     return ans;
     19 }
     20 ll inv(ll x,ll mod){return fastpow(x,mod-2,mod);}
     21 const ll mod = 998244353;
     22 int n,q;
     23 vector<int> g[maxn];
     24 int f[maxn],top[maxn];
     25 int lpos[maxn],rpos[maxn],cnt,sz[maxn];
     26 ll addt[maxn];
     27 const int B = 100;
     28 void dfs(int u,int fa)
     29 {
     30     if(g[fa].size()>B)top[u]=u;
     31     else top[u]=top[fa];
     32     f[u]=fa;
     33     lpos[u]=++cnt; 
     34     sz[u]=1;
     35     for(int v:g[u])if(v!=fa)
     36     {
     37         dfs(v,u);
     38         sz[u]+=sz[v];
     39     }
     40     rpos[u]=cnt;
     41 }
     42 ll val[maxn<<2];
     43 void add(int rt,int l,int r,int ql,int qr,ll v)
     44 {
     45     if(ql>qr)return;
     46     if(ql<=l&&r<=qr)
     47     {
     48         val[rt]=(val[rt]+v)%mod;
     49         return;
     50     }
     51     int mid=(l+r)>>1;
     52     if(ql<=mid)add(rt<<1,l,mid,ql,qr,v);
     53     if(qr>mid)add(rt<<1|1,mid+1,r,ql,qr,v);
     54 }
     55 ll query(int rt,int l,int r,int pos)
     56 {
     57     ll ans=val[rt];
     58     int mid=(l+r)>>1;
     59     if(l==r)return ans;
     60     if(pos<=mid)ans=(ans+query(rt<<1,l,mid,pos))%mod;
     61     else ans=(ans+query(rt<<1|1,mid+1,r,pos))%mod;
     62     return ans;
     63 }
     64 int main()
     65 {
     66     scanf("%d%d",&n,&q);
     67     for(int x,y,i=1;i<n;++i)
     68     {
     69         scanf("%d%d",&x,&y);
     70         g[x].push_back(y);
     71         g[y].push_back(x); 
     72     }
     73     dfs(1,0);
     74     while(q--)
     75     {
     76         int opt,u,d;
     77         scanf("%d",&opt);
     78         if(opt==1)
     79         {
     80             scanf("%d%d",&u,&d);
     81             add(1,1,n,1,lpos[u]-1,1ll*sz[u]*inv(n,mod)%mod*d%mod);
     82             add(1,1,n,rpos[u]+1,n,1ll*sz[u]*inv(n,mod)%mod*d%mod);
     83             if(g[u].size()>B)addt[u]=(addt[u]+d)%mod;
     84             else
     85             {
     86                 for(int v:g[u])if(v!=f[u])
     87                 {
     88                     add(1,1,n,lpos[v],rpos[v],1ll*(n-sz[v])*inv(n,mod)%mod*d%mod);
     89                 }
     90                 add(1,1,n,lpos[u],lpos[u],d);
     91             }
     92         }
     93         else
     94         {
     95             scanf("%d",&u);
     96             ll ans=(addt[u]+query(1,1,n,lpos[u]))%mod; 
     97             while(top[u])
     98             {
     99                 u=top[u];
    100                 ans=(ans+1ll*(n-sz[u])*inv(n,mod)%mod*addt[f[u]]%mod)%mod;
    101                 u=f[u];
    102             }
    103             printf("%I64d
    ",ans);
    104         }
    105     }
    106 }
    View Code
  • 相关阅读:
    SAP BW维护项目中的常见问题 沧海
    从印度英语想到creole 沧海
    侃State模式
    住在“天堂”的代价一个工薪阶层买房的感受
    家庭财务总管软件设计
    侃观察者模式(Observer)
    软件设计起步:画UML类图
    一个提醒软件---好朋友
    学习设计模式的一些心得
    一次偶然结对编程的感受
  • 原文地址:https://www.cnblogs.com/uuzlove/p/11896865.html
Copyright © 2011-2022 走看看