zoukankan      html  css  js  c++  java
  • yolo源码解析(1):代码逻辑

    一. 整体代码逻辑

    yolo中源码分为三个部分,example,include,以及src文件夹下都有源代码存在.

    结构如下所示

    ├── examples
    │   ├── darknet.c(主程序)
    │   │── xxx1.c
    │   └── xxx2.c
    │
    ├── include
    │   ├── darknet.h
    │ 
    │ 
    ├── Makefile
    │ 
    │ 
    └── src
        ├── yyy1.c
        ├── yyy2.h
        └──......

    include文件夹中没有.h头文件, 里边的内容算作一个整体, 都是darknet.c中的一部分, 每个文件的内容共darknet.c调用, 除了darknet.c外, include文件夹中的文件不存在互相调用, 各自完成不同的功能,如检测视频, 检测图片, 检测艺术品等, 通过darknet.c中的if条件进行选择调用. 因为这部分算作一个整体, 所以共用darknet.h这个头文件. 如果include需要用到src中的函数, 则在darknet.h中进行声明

    在src文件夹中, 每个c文件都对应一个同名的.h头文件; main函数存在于example文件夹下的darknet.c文件中.

    include文件夹下的darknet.h的作用是联系example与src两部分, 在这两部分中都需要用的函数则在darknet.h中进行声明, 例如example中有xxx1.c, src中有yyy1.c及yyy1.h, xxx1.c与yyy1.c中都需要用到func()这个函数, 那么func()的声明需要放在darknet.h中, 然后在xxx1.c与yyy1.h分别引入头文件#include "darknet.h"

    而如果exampledarknet.c中需要调用examplexxx1.c中的函数, 则需要在exampledarknet.c加extern字段

    多文件的实现方式(头文件的使用)

    在本项目中, includesdarknet.h是examples中文件的头文件, 而在includesdarknet.h中, 又对部分函数(例如 void forward_network(network *net); )进行了声明, 但是 forward_network 函数的定义是在src etwork.c中, 因为定义是在src中, 所以定义时src中的文件需要引入darknet.h这个头文件; 由此, examples中的文件便可通过darknet.h中的声明调用src中的函数了

    举例

    对于 ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg 这条命令,首先传送到darknet.c文件, 然后darknet.c文件检测到含有detect字符, 所以进入if语句. 使用srcutils.c中的find_char_arg函数来获取输出文件名等信息, 然后调用detector.c文件中的test_detector函数, 该函数负责检测并进行输出.

    二. main函数

     唉唉唉

    三. makefile文件

    入门见<并行程序设计(第四版)>

    以yolo源码中的makefile文件为例

    GPU=0
    CUDNN=0
    OPENCV=0
    OPENMP=0
    DEBUG=0
    
    ARCH= -gencode arch=compute_30,code=sm_30 
          -gencode arch=compute_35,code=sm_35 
          -gencode arch=compute_50,code=[sm_50,compute_50] 
          -gencode arch=compute_52,code=[sm_52,compute_52]
    #      -gencode arch=compute_20,code=[sm_20,sm_21]  This one is deprecated?
    
    # This is what I use, uncomment if you know your arch and want to specify
    # ARCH= -gencode arch=compute_52,code=compute_52
    
    VPATH=./src/:./examples
    # VTATH用来告诉make,源文件的路径, 参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139
    SLIB=libdarknet.so
    ALIB=libdarknet.a
    EXEC=darknet
    OBJDIR=./obj/
    
    CC=gcc
    NVCC=nvcc 
    AR=ar
    ARFLAGS=rcs
    OPTS=-Ofast
    LDFLAGS= -lm -pthread       #gcc等编译器会用到的一些优化参数,也可以在里面指定库文件的位置
    COMMON= -Iinclude/ -Isrc/
    CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC   #指定头文件(.h文件)的路径,如:CFLAGS=-I/usr/include -I/path/include。
    
    ifeq ($(OPENMP), 1) 
    CFLAGS+= -fopenmp
    endif
    
    ifeq ($(DEBUG), 1) 
    OPTS=-O0 -g
    endif
    
    CFLAGS+=$(OPTS)
    
    ifeq ($(OPENCV), 1) 
    COMMON+= -DOPENCV
    CFLAGS+= -DOPENCV
    LDFLAGS+= `pkg-config --libs opencv` 
    COMMON+= `pkg-config --cflags opencv` 
    endif
    
    ifeq ($(GPU), 1) 
    COMMON+= -DGPU -I/usr/local/cuda/include/
    CFLAGS+= -DGPU
    LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
    endif
    
    ifeq ($(CUDNN), 1) 
    COMMON+= -DCUDNN 
    CFLAGS+= -DCUDNN
    LDFLAGS+= -lcudnn
    endif
    
    OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o  lstm_layer.o l2norm_layer.o yolo_layer.o
    EXECOBJA=my_test.o  captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
    ifeq ($(GPU), 1) 
    LDFLAGS+= -lstdc++ 
    OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
    endif
    
    EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA))   #加前缀函数: $(addprefix <prefix>,<names...>),OBJDIR是obj存放的地址
    OBJS = $(addprefix $(OBJDIR), $(OBJ))
    DEPS = $(wildcard src/*.h) Makefile include/darknet.h
    
    #all: obj backup results $(SLIB) $(ALIB) $(EXEC)
    all: obj  results $(SLIB) $(ALIB) $(EXEC)
    
    
    $(EXEC): $(EXECOBJ) $(ALIB)
        $(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB)
    
    $(ALIB): $(OBJS)
        $(AR) $(ARFLAGS) $@ $^
    
    $(SLIB): $(OBJS)
        $(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS)
    
    $(OBJDIR)%.o: %.c $(DEPS)
        $(CC) $(COMMON) $(CFLAGS) -c $< -o $@
    
    $(OBJDIR)%.o: %.cu $(DEPS)
        $(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
    
    obj:
        mkdir -p obj
    backup:
        mkdir -p backup
    results:
        mkdir -p results
    
    .PHONY: clean
    
    clean:
        rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*
    View Code

    关于vpath,参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139

    (1)修改代码的第一次尝试

    在examples文件夹下新建my_test.c文件, 内容如下

    #include "darknet.h"
    
    void output_to_file()
    {
        FILE *fp;
        fp=fopen("output.txt","w");
        fprintf(fp,"adfsss");
        printf("test
    ");
        fclose(fp);
    }
    View Code

    在darknet.c中进行调用, 如下

    #include "darknet.h"
    
    #include <time.h>
    #include <stdlib.h>
    #include <stdio.h>
    //
    
    extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);     // 在examplesclassifier.c中
    extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen);     // 在examplesdetector.c中
    extern void run_yolo(int argc, char **argv);     // 在examplesyolo.c中
    extern void run_detector(int argc, char **argv);     // 在examplesdetector.c中
    extern void run_coco(int argc, char **argv);         // 在examplescoco.c中
    extern void run_captcha(int argc, char **argv);      // 在examplescaptcha.c中
    extern void run_nightmare(int argc, char **argv);        // 在examples
    ightmare.c中
    extern void run_classifier(int argc, char **argv);       // 在examplesclassifier.c中
    extern void run_regressor(int argc, char **argv);        // 在examples
    egressor.c中
    extern void run_segmenter(int argc, char **argv);        // 在examplessegmenter.c中
    extern void run_char_rnn(int argc, char **argv);         // 在examples
    nn.c中
    extern void run_tag(int argc, char **argv);              // 在examples	ag.c中
    extern void run_cifar(int argc, char **argv);            // 在examplesfun_cifar.c中
    extern void run_go(int argc, char **argv);               // 在examplesgo.c中
    extern void run_art(int argc, char **argv);              // 在examplesart.c中
    extern void run_super(int argc, char **argv);            // 在examplessuper.c中
    extern void run_lsd(int argc, char **argv);              // 在examples
    ightmare.c中
    extern void output_to_file();              // 在examplesmy_test.c中
    
    void average(int argc, char *argv[])
    {
        char *cfgfile = argv[2];
        char *outfile = argv[3];
        gpu_index = -1;
        network *net = parse_network_cfg(cfgfile);
        network *sum = parse_network_cfg(cfgfile);
    
        char *weightfile = argv[4];   
        load_weights(sum, weightfile);
    
        int i, j;
        int n = argc - 5;
        for(i = 0; i < n; ++i){
            weightfile = argv[i+5];   
            load_weights(net, weightfile);
            for(j = 0; j < net->n; ++j){
                layer l = net->layers[j];
                layer out = sum->layers[j];
                if(l.type == CONVOLUTIONAL){
                    int num = l.n*l.c*l.size*l.size;
                    axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
                    axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
                    if(l.batch_normalize){
                        axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
                        axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
                        axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
                    }
                }
                if(l.type == CONNECTED){
                    axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
                    axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
                }
            }
        }
        n = n+1;
        for(j = 0; j < net->n; ++j){
            layer l = sum->layers[j];
            if(l.type == CONVOLUTIONAL){
                int num = l.n*l.c*l.size*l.size;
                scal_cpu(l.n, 1./n, l.biases, 1);
                scal_cpu(num, 1./n, l.weights, 1);
                    if(l.batch_normalize){
                        scal_cpu(l.n, 1./n, l.scales, 1);
                        scal_cpu(l.n, 1./n, l.rolling_mean, 1);
                        scal_cpu(l.n, 1./n, l.rolling_variance, 1);
                    }
            }
            if(l.type == CONNECTED){
                scal_cpu(l.outputs, 1./n, l.biases, 1);
                scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
            }
        }
        save_weights(sum, outfile);
    }
    
    long numops(network *net)
    {
        int i;
        long ops = 0;
        for(i = 0; i < net->n; ++i){
            layer l = net->layers[i];
            if(l.type == CONVOLUTIONAL){
                ops += 2l * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w;
            } else if(l.type == CONNECTED){
                ops += 2l * l.inputs * l.outputs;
            } else if (l.type == RNN){
                ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
                ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
                ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
            } else if (l.type == GRU){
                ops += 2l * l.uz->inputs * l.uz->outputs;
                ops += 2l * l.uh->inputs * l.uh->outputs;
                ops += 2l * l.ur->inputs * l.ur->outputs;
                ops += 2l * l.wz->inputs * l.wz->outputs;
                ops += 2l * l.wh->inputs * l.wh->outputs;
                ops += 2l * l.wr->inputs * l.wr->outputs;
            } else if (l.type == LSTM){
                ops += 2l * l.uf->inputs * l.uf->outputs;
                ops += 2l * l.ui->inputs * l.ui->outputs;
                ops += 2l * l.ug->inputs * l.ug->outputs;
                ops += 2l * l.uo->inputs * l.uo->outputs;
                ops += 2l * l.wf->inputs * l.wf->outputs;
                ops += 2l * l.wi->inputs * l.wi->outputs;
                ops += 2l * l.wg->inputs * l.wg->outputs;
                ops += 2l * l.wo->inputs * l.wo->outputs;
            }
        }
        return ops;
    }
    
    void speed(char *cfgfile, int tics)
    {
        if (tics == 0) tics = 1000;
        network *net = parse_network_cfg(cfgfile);
        set_batch_network(net, 1);
        int i;
        double time=what_time_is_it_now();
        image im = make_image(net->w, net->h, net->c*net->batch);
        for(i = 0; i < tics; ++i){
            network_predict(net, im.data);
        }
        double t = what_time_is_it_now() - time;
        long ops = numops(net);
        printf("
    %d evals, %f Seconds
    ", tics, t);
        printf("Floating Point Operations: %.2f Bn
    ", (float)ops/1000000000.);
        printf("FLOPS: %.2f Bn
    ", (float)ops/1000000000.*tics/t);
        printf("Speed: %f sec/eval
    ", t/tics);
        printf("Speed: %f Hz
    ", tics/t);
    }
    
    void operations(char *cfgfile)
    {
        gpu_index = -1;
        network *net = parse_network_cfg(cfgfile);
        long ops = numops(net);
        printf("Floating Point Operations: %ld
    ", ops);
        printf("Floating Point Operations: %.2f Bn
    ", (float)ops/1000000000.);
    }
    
    void oneoff(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = parse_network_cfg(cfgfile);
        int oldn = net->layers[net->n - 2].n;
        int c = net->layers[net->n - 2].c;
        scal_cpu(oldn*c, .1, net->layers[net->n - 2].weights, 1);
        scal_cpu(oldn, 0, net->layers[net->n - 2].biases, 1);
        net->layers[net->n - 2].n = 11921;
        net->layers[net->n - 2].biases += 5;
        net->layers[net->n - 2].weights += 5*c;
        if(weightfile){
            load_weights(net, weightfile);
        }
        net->layers[net->n - 2].biases -= 5;
        net->layers[net->n - 2].weights -= 5*c;
        net->layers[net->n - 2].n = oldn;
        printf("%d
    ", oldn);
        layer l = net->layers[net->n - 2];
        copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
        copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
        copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
        copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
        *net->seen = 0;
        save_weights(net, outfile);
    }
    
    void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
    {
        gpu_index = -1;
        network *net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights_upto(net, weightfile, 0, net->n);
            load_weights_upto(net, weightfile, l, net->n);
        }
        *net->seen = 0;
        save_weights_upto(net, outfile, net->n);
    }
    
    void partial(char *cfgfile, char *weightfile, char *outfile, int max)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 1);
        save_weights_upto(net, outfile, max);
    }
    
    void print_weights(char *cfgfile, char *weightfile, int n)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 1);
        layer l = net->layers[n];
        int i, j;
        //printf("[");
        for(i = 0; i < l.n; ++i){
            //printf("[");
            for(j = 0; j < l.size*l.size*l.c; ++j){
                //if(j > 0) printf(",");
                printf("%g ", l.weights[i*l.size*l.size*l.c + j]);
            }
            printf("
    ");
            //printf("]%s
    ", (i == l.n-1)?"":",");
        }
        //printf("]");
    }
    
    void rescale_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for(i = 0; i < net->n; ++i){
            layer l = net->layers[i];
            if(l.type == CONVOLUTIONAL){
                rescale_weights(l, 2, -.5);
                break;
            }
        }
        save_weights(net, outfile);
    }
    
    void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for(i = 0; i < net->n; ++i){
            layer l = net->layers[i];
            if(l.type == CONVOLUTIONAL){
                rgbgr_weights(l);
                break;
            }
        }
        save_weights(net, outfile);
    }
    
    void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for (i = 0; i < net->n; ++i) {
            layer l = net->layers[i];
            if (l.type == CONVOLUTIONAL && l.batch_normalize) {
                denormalize_convolutional_layer(l);
            }
            if (l.type == CONNECTED && l.batch_normalize) {
                denormalize_connected_layer(l);
            }
            if (l.type == GRU && l.batch_normalize) {
                denormalize_connected_layer(*l.input_z_layer);
                denormalize_connected_layer(*l.input_r_layer);
                denormalize_connected_layer(*l.input_h_layer);
                denormalize_connected_layer(*l.state_z_layer);
                denormalize_connected_layer(*l.state_r_layer);
                denormalize_connected_layer(*l.state_h_layer);
            }
        }
        save_weights(net, outfile);
    }
    
    layer normalize_layer(layer l, int n)
    {
        int j;
        l.batch_normalize=1;
        l.scales = calloc(n, sizeof(float));
        for(j = 0; j < n; ++j){
            l.scales[j] = 1;
        }
        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
        return l;
    }
    
    void normalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for(i = 0; i < net->n; ++i){
            layer l = net->layers[i];
            if(l.type == CONVOLUTIONAL && !l.batch_normalize){
                net->layers[i] = normalize_layer(l, l.n);
            }
            if (l.type == CONNECTED && !l.batch_normalize) {
                net->layers[i] = normalize_layer(l, l.outputs);
            }
            if (l.type == GRU && l.batch_normalize) {
                *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
                *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
                *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
                *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
                *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
                *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
                net->layers[i].batch_normalize=1;
            }
        }
        save_weights(net, outfile);
    }
    
    void statistics_net(char *cfgfile, char *weightfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for (i = 0; i < net->n; ++i) {
            layer l = net->layers[i];
            if (l.type == CONNECTED && l.batch_normalize) {
                printf("Connected Layer %d
    ", i);
                statistics_connected_layer(l);
            }
            if (l.type == GRU && l.batch_normalize) {
                printf("GRU Layer %d
    ", i);
                printf("Input Z
    ");
                statistics_connected_layer(*l.input_z_layer);
                printf("Input R
    ");
                statistics_connected_layer(*l.input_r_layer);
                printf("Input H
    ");
                statistics_connected_layer(*l.input_h_layer);
                printf("State Z
    ");
                statistics_connected_layer(*l.state_z_layer);
                printf("State R
    ");
                statistics_connected_layer(*l.state_r_layer);
                printf("State H
    ");
                statistics_connected_layer(*l.state_h_layer);
            }
            printf("
    ");
        }
    }
    
    void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for (i = 0; i < net->n; ++i) {
            layer l = net->layers[i];
            if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) {
                denormalize_convolutional_layer(l);
                net->layers[i].batch_normalize=0;
            }
            if (l.type == CONNECTED && l.batch_normalize) {
                denormalize_connected_layer(l);
                net->layers[i].batch_normalize=0;
            }
            if (l.type == GRU && l.batch_normalize) {
                denormalize_connected_layer(*l.input_z_layer);
                denormalize_connected_layer(*l.input_r_layer);
                denormalize_connected_layer(*l.input_h_layer);
                denormalize_connected_layer(*l.state_z_layer);
                denormalize_connected_layer(*l.state_r_layer);
                denormalize_connected_layer(*l.state_h_layer);
                l.input_z_layer->batch_normalize = 0;
                l.input_r_layer->batch_normalize = 0;
                l.input_h_layer->batch_normalize = 0;
                l.state_z_layer->batch_normalize = 0;
                l.state_r_layer->batch_normalize = 0;
                l.state_h_layer->batch_normalize = 0;
                net->layers[i].batch_normalize=0;
            }
        }
        save_weights(net, outfile);
    }
    
    void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
    {
        network *net = load_network(cfgfile, weightfile, 0);
        image *ims = get_weights(net->layers[0]);
        int n = net->layers[0].n;
        int z;
        for(z = 0; z < num; ++z){
            image im = make_image(h, w, 3);
            fill_image(im, .5);
            int i;
            for(i = 0; i < 100; ++i){
                image r = copy_image(ims[rand()%n]);
                rotate_image_cw(r, rand()%4);
                random_distort_image(r, 1, 1.5, 1.5);
                int dx = rand()%(w-r.w);
                int dy = rand()%(h-r.h);
                ghost_image(r, im, dx, dy);
                free_image(r);
            }
            char buff[256];
            sprintf(buff, "%s/gen_%d", prefix, z);
            save_image(im, buff);
            free_image(im);
        }
    }
    
    void visualize(char *cfgfile, char *weightfile)
    {
        network *net = load_network(cfgfile, weightfile, 0);
        visualize_network(net);
    #ifdef OPENCV
        cvWaitKey(0);
    #endif
    }
    
    int main(int argc, char **argv)
    {
        // argv[0] 指向程序运行的全路径名;argv[1] 指向在DOS命令行中执行程序名后的第一个字符串;argv[2]第二个
        //test_resize("data/bad.jpg");
        //test_box();
        //test_convolutional_layer();
        if(argc < 2){
            fprintf(stderr, "usage: %s <function>
    ", argv[0]);
            return 0;
        }
        gpu_index = find_int_arg(argc, argv, "-i", 0);
        if(find_arg(argc, argv, "-nogpu")) {
            gpu_index = -1;
        }
    
    #ifndef GPU
        gpu_index = -1;
    #else
        if(gpu_index >= 0){
            cuda_set_device(gpu_index);
        }
    #endif
    
        if (0 == strcmp(argv[1], "average")){
            average(argc, argv);
        } else if (0 == strcmp(argv[1], "yolo")){
            run_yolo(argc, argv);
        } else if (0 == strcmp(argv[1], "super")){
            run_super(argc, argv);
        } else if (0 == strcmp(argv[1], "lsd")){
            run_lsd(argc, argv);
        } else if (0 == strcmp(argv[1], "detector")){
            run_detector(argc, argv);
        } else if (0 == strcmp(argv[1], "detect")){
            float thresh = find_float_arg(argc, argv, "-thresh", .5);       //thresh用来控制检测的阈值
            char *filename = (argc > 4) ? argv[4]: 0;
            char *outfile = find_char_arg(argc, argv, "-out", 0);           // 定义在srcutils.c中
            int fullscreen = find_arg(argc, argv, "-fullscreen");
            test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen);      // 函数定义位于detector.c中
            // 命令举例./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
    
            //*修改//
            output_to_file();
            //*//
    
        } else if (0 == strcmp(argv[1], "cifar")){
            run_cifar(argc, argv);
        } else if (0 == strcmp(argv[1], "go")){
            run_go(argc, argv);
        } else if (0 == strcmp(argv[1], "rnn")){
            run_char_rnn(argc, argv);
        } else if (0 == strcmp(argv[1], "coco")){
            run_coco(argc, argv);
        } else if (0 == strcmp(argv[1], "classify")){
            predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
        } else if (0 == strcmp(argv[1], "classifier")){
            run_classifier(argc, argv);
        } else if (0 == strcmp(argv[1], "regressor")){
            run_regressor(argc, argv);
        } else if (0 == strcmp(argv[1], "segmenter")){
            run_segmenter(argc, argv);
        } else if (0 == strcmp(argv[1], "art")){
            run_art(argc, argv);
        } else if (0 == strcmp(argv[1], "tag")){
            run_tag(argc, argv);
        } else if (0 == strcmp(argv[1], "3d")){
            composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
        } else if (0 == strcmp(argv[1], "test")){
            test_resize(argv[2]);
        } else if (0 == strcmp(argv[1], "captcha")){
            run_captcha(argc, argv);
        } else if (0 == strcmp(argv[1], "nightmare")){
            run_nightmare(argc, argv);
        } else if (0 == strcmp(argv[1], "rgbgr")){
            rgbgr_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "reset")){
            reset_normalize_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "denormalize")){
            denormalize_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "statistics")){
            statistics_net(argv[2], argv[3]);
        } else if (0 == strcmp(argv[1], "normalize")){
            normalize_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "rescale")){
            rescale_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "ops")){
            operations(argv[2]);
        } else if (0 == strcmp(argv[1], "speed")){
            speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
        } else if (0 == strcmp(argv[1], "oneoff")){
            oneoff(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "oneoff2")){
            oneoff2(argv[2], argv[3], argv[4], atoi(argv[5]));
        } else if (0 == strcmp(argv[1], "print")){
            print_weights(argv[2], argv[3], atoi(argv[4]));
        } else if (0 == strcmp(argv[1], "partial")){
            partial(argv[2], argv[3], argv[4], atoi(argv[5]));
        } else if (0 == strcmp(argv[1], "average")){
            average(argc, argv);
        } else if (0 == strcmp(argv[1], "visualize")){
            visualize(argv[2], (argc > 3) ? argv[3] : 0);
        } else if (0 == strcmp(argv[1], "mkimg")){
            mkimg(argv[2], argv[3], atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), argv[7]);
        } else if (0 == strcmp(argv[1], "imtest")){
            test_resize(argv[2]);
        } else {
            fprintf(stderr, "Not an option: %s
    ", argv[1]);
        }
        return 0;
    }
    View Code

    然后修改Makefile文件, 在EXECOBJA=后追加my_test.o字段. 注意不可将该字段放在EXECOBJA=的最后, 否则编译不通过. 内容如下

    GPU=0
    CUDNN=0
    OPENCV=0
    OPENMP=0
    DEBUG=0
    
    ARCH= -gencode arch=compute_30,code=sm_30 
          -gencode arch=compute_35,code=sm_35 
          -gencode arch=compute_50,code=[sm_50,compute_50] 
          -gencode arch=compute_52,code=[sm_52,compute_52]
    #      -gencode arch=compute_20,code=[sm_20,sm_21]  This one is deprecated?
    
    # This is what I use, uncomment if you know your arch and want to specify
    # ARCH= -gencode arch=compute_52,code=compute_52
    
    VPATH=./src/:./examples
    # VTATH用来告诉make,源文件的路径, 参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139
    SLIB=libdarknet.so
    ALIB=libdarknet.a
    EXEC=darknet
    OBJDIR=./obj/
    
    CC=gcc
    NVCC=nvcc 
    AR=ar
    ARFLAGS=rcs
    OPTS=-Ofast
    LDFLAGS= -lm -pthread       #gcc等编译器会用到的一些优化参数,也可以在里面指定库文件的位置
    COMMON= -Iinclude/ -Isrc/
    CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC   #指定头文件(.h文件)的路径,如:CFLAGS=-I/usr/include -I/path/include。
    
    ifeq ($(OPENMP), 1) 
    CFLAGS+= -fopenmp
    endif
    
    ifeq ($(DEBUG), 1) 
    OPTS=-O0 -g
    endif
    
    CFLAGS+=$(OPTS)
    
    ifeq ($(OPENCV), 1) 
    COMMON+= -DOPENCV
    CFLAGS+= -DOPENCV
    LDFLAGS+= `pkg-config --libs opencv` 
    COMMON+= `pkg-config --cflags opencv` 
    endif
    
    ifeq ($(GPU), 1) 
    COMMON+= -DGPU -I/usr/local/cuda/include/
    CFLAGS+= -DGPU
    LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
    endif
    
    ifeq ($(CUDNN), 1) 
    COMMON+= -DCUDNN 
    CFLAGS+= -DCUDNN
    LDFLAGS+= -lcudnn
    endif
    
    OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o  lstm_layer.o l2norm_layer.o yolo_layer.o
    EXECOBJA=my_test.o  captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
    ifeq ($(GPU), 1) 
    LDFLAGS+= -lstdc++ 
    OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
    endif
    
    EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA))   #加前缀函数: $(addprefix <prefix>,<names...>),OBJDIR是obj存放的地址
    OBJS = $(addprefix $(OBJDIR), $(OBJ))
    DEPS = $(wildcard src/*.h) Makefile include/darknet.h
    
    #all: obj backup results $(SLIB) $(ALIB) $(EXEC)
    all: obj  results $(SLIB) $(ALIB) $(EXEC)
    
    
    $(EXEC): $(EXECOBJ) $(ALIB)
        $(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB)
    
    $(ALIB): $(OBJS)
        $(AR) $(ARFLAGS) $@ $^
    
    $(SLIB): $(OBJS)
        $(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS)
    
    $(OBJDIR)%.o: %.c $(DEPS)
        $(CC) $(COMMON) $(CFLAGS) -c $< -o $@
    
    $(OBJDIR)%.o: %.cu $(DEPS)
        $(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
    
    obj:
        mkdir -p obj
    backup:
        mkdir -p backup
    results:
        mkdir -p results
    
    .PHONY: clean
    
    clean:
        rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*
    View Code

    编译并可成功运行.

     (2)修改代码的第二次尝试

    在src目录下新建my_testinsrc.c以及my_testinsrc.h, 内容如下

    // my_testinsrc.h
    #include "darknet.h"
    
    
    
    // my_testinsrc.c
    #include <stdio.h>
    void my_testinsrc(){
        printf("test in src
    ");
    }
    View Code

    修改Makefile, 在最后声明新加的函数

    修改后内容如下

    GPU=0
    CUDNN=0
    OPENCV=0
    OPENMP=0
    DEBUG=0
    
    ARCH= -gencode arch=compute_30,code=sm_30 
          -gencode arch=compute_35,code=sm_35 
          -gencode arch=compute_50,code=[sm_50,compute_50] 
          -gencode arch=compute_52,code=[sm_52,compute_52]
    #      -gencode arch=compute_20,code=[sm_20,sm_21]  This one is deprecated?
    
    # This is what I use, uncomment if you know your arch and want to specify
    # ARCH= -gencode arch=compute_52,code=compute_52
    
    VPATH=./src/:./examples
    # VTATH用来告诉make,源文件的路径, 参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139
    SLIB=libdarknet.so
    ALIB=libdarknet.a
    EXEC=darknet
    OBJDIR=./obj/
    
    CC=gcc
    NVCC=nvcc 
    AR=ar
    ARFLAGS=rcs
    OPTS=-Ofast
    LDFLAGS= -lm -pthread       #gcc等编译器会用到的一些优化参数,也可以在里面指定库文件的位置
    COMMON= -Iinclude/ -Isrc/
    CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC   #指定头文件(.h文件)的路径,如:CFLAGS=-I/usr/include -I/path/include。
    
    ifeq ($(OPENMP), 1) 
    CFLAGS+= -fopenmp
    endif
    
    ifeq ($(DEBUG), 1) 
    OPTS=-O0 -g
    endif
    
    CFLAGS+=$(OPTS)
    
    ifeq ($(OPENCV), 1) 
    COMMON+= -DOPENCV
    CFLAGS+= -DOPENCV
    LDFLAGS+= `pkg-config --libs opencv` 
    COMMON+= `pkg-config --cflags opencv` 
    endif
    
    ifeq ($(GPU), 1) 
    COMMON+= -DGPU -I/usr/local/cuda/include/
    CFLAGS+= -DGPU
    LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
    endif
    
    ifeq ($(CUDNN), 1) 
    COMMON+= -DCUDNN 
    CFLAGS+= -DCUDNN
    LDFLAGS+= -lcudnn
    endif
    
    OBJ=my_testinsrc.o  gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o  lstm_layer.o l2norm_layer.o yolo_layer.o
    EXECOBJA=my_test.o  captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
    ifeq ($(GPU), 1) 
    LDFLAGS+= -lstdc++ 
    OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
    endif
    
    EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA))   #加前缀函数: $(addprefix <prefix>,<names...>),OBJDIR是obj存放的地址
    OBJS = $(addprefix $(OBJDIR), $(OBJ))
    DEPS = $(wildcard src/*.h) Makefile include/darknet.h
    
    #all: obj backup results $(SLIB) $(ALIB) $(EXEC)
    all: obj  results $(SLIB) $(ALIB) $(EXEC)
    
    
    $(EXEC): $(EXECOBJ) $(ALIB)
        $(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB)
    
    $(ALIB): $(OBJS)
        $(AR) $(ARFLAGS) $@ $^
    
    $(SLIB): $(OBJS)
        $(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS)
    
    $(OBJDIR)%.o: %.c $(DEPS)
        $(CC) $(COMMON) $(CFLAGS) -c $< -o $@
    
    $(OBJDIR)%.o: %.cu $(DEPS)
        $(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
    
    obj:
        mkdir -p obj
    backup:
        mkdir -p backup
    results:
        mkdir -p results
    
    .PHONY: clean
    
    clean:
        rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*
    View Code

    在darknet.c中进行调用, 内容如下

    #include "darknet.h"
    
    #include <time.h>
    #include <stdlib.h>
    #include <stdio.h>
    //
    
    extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);     // 在examplesclassifier.c中
    extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen);     // 在examplesdetector.c中
    extern void run_yolo(int argc, char **argv);     // 在examplesyolo.c中
    extern void run_detector(int argc, char **argv);     // 在examplesdetector.c中
    extern void run_coco(int argc, char **argv);         // 在examplescoco.c中
    extern void run_captcha(int argc, char **argv);      // 在examplescaptcha.c中
    extern void run_nightmare(int argc, char **argv);        // 在examples
    ightmare.c中
    extern void run_classifier(int argc, char **argv);       // 在examplesclassifier.c中
    extern void run_regressor(int argc, char **argv);        // 在examples
    egressor.c中
    extern void run_segmenter(int argc, char **argv);        // 在examplessegmenter.c中
    extern void run_char_rnn(int argc, char **argv);         // 在examples
    nn.c中
    extern void run_tag(int argc, char **argv);              // 在examples	ag.c中
    extern void run_cifar(int argc, char **argv);            // 在examplesfun_cifar.c中
    extern void run_go(int argc, char **argv);               // 在examplesgo.c中
    extern void run_art(int argc, char **argv);              // 在examplesart.c中
    extern void run_super(int argc, char **argv);            // 在examplessuper.c中
    extern void run_lsd(int argc, char **argv);              // 在examples
    ightmare.c中
    extern void output_to_file();              // 在examplesmy_test.c中
    
    void average(int argc, char *argv[])
    {
        char *cfgfile = argv[2];
        char *outfile = argv[3];
        gpu_index = -1;
        network *net = parse_network_cfg(cfgfile);
        network *sum = parse_network_cfg(cfgfile);
    
        char *weightfile = argv[4];   
        load_weights(sum, weightfile);
    
        int i, j;
        int n = argc - 5;
        for(i = 0; i < n; ++i){
            weightfile = argv[i+5];   
            load_weights(net, weightfile);
            for(j = 0; j < net->n; ++j){
                layer l = net->layers[j];
                layer out = sum->layers[j];
                if(l.type == CONVOLUTIONAL){
                    int num = l.n*l.c*l.size*l.size;
                    axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
                    axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
                    if(l.batch_normalize){
                        axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
                        axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
                        axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
                    }
                }
                if(l.type == CONNECTED){
                    axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
                    axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
                }
            }
        }
        n = n+1;
        for(j = 0; j < net->n; ++j){
            layer l = sum->layers[j];
            if(l.type == CONVOLUTIONAL){
                int num = l.n*l.c*l.size*l.size;
                scal_cpu(l.n, 1./n, l.biases, 1);
                scal_cpu(num, 1./n, l.weights, 1);
                    if(l.batch_normalize){
                        scal_cpu(l.n, 1./n, l.scales, 1);
                        scal_cpu(l.n, 1./n, l.rolling_mean, 1);
                        scal_cpu(l.n, 1./n, l.rolling_variance, 1);
                    }
            }
            if(l.type == CONNECTED){
                scal_cpu(l.outputs, 1./n, l.biases, 1);
                scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
            }
        }
        save_weights(sum, outfile);
    }
    
    long numops(network *net)
    {
        int i;
        long ops = 0;
        for(i = 0; i < net->n; ++i){
            layer l = net->layers[i];
            if(l.type == CONVOLUTIONAL){
                ops += 2l * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w;
            } else if(l.type == CONNECTED){
                ops += 2l * l.inputs * l.outputs;
            } else if (l.type == RNN){
                ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
                ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
                ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
            } else if (l.type == GRU){
                ops += 2l * l.uz->inputs * l.uz->outputs;
                ops += 2l * l.uh->inputs * l.uh->outputs;
                ops += 2l * l.ur->inputs * l.ur->outputs;
                ops += 2l * l.wz->inputs * l.wz->outputs;
                ops += 2l * l.wh->inputs * l.wh->outputs;
                ops += 2l * l.wr->inputs * l.wr->outputs;
            } else if (l.type == LSTM){
                ops += 2l * l.uf->inputs * l.uf->outputs;
                ops += 2l * l.ui->inputs * l.ui->outputs;
                ops += 2l * l.ug->inputs * l.ug->outputs;
                ops += 2l * l.uo->inputs * l.uo->outputs;
                ops += 2l * l.wf->inputs * l.wf->outputs;
                ops += 2l * l.wi->inputs * l.wi->outputs;
                ops += 2l * l.wg->inputs * l.wg->outputs;
                ops += 2l * l.wo->inputs * l.wo->outputs;
            }
        }
        return ops;
    }
    
    void speed(char *cfgfile, int tics)
    {
        if (tics == 0) tics = 1000;
        network *net = parse_network_cfg(cfgfile);
        set_batch_network(net, 1);
        int i;
        double time=what_time_is_it_now();
        image im = make_image(net->w, net->h, net->c*net->batch);
        for(i = 0; i < tics; ++i){
            network_predict(net, im.data);
        }
        double t = what_time_is_it_now() - time;
        long ops = numops(net);
        printf("
    %d evals, %f Seconds
    ", tics, t);
        printf("Floating Point Operations: %.2f Bn
    ", (float)ops/1000000000.);
        printf("FLOPS: %.2f Bn
    ", (float)ops/1000000000.*tics/t);
        printf("Speed: %f sec/eval
    ", t/tics);
        printf("Speed: %f Hz
    ", tics/t);
    }
    
    void operations(char *cfgfile)
    {
        gpu_index = -1;
        network *net = parse_network_cfg(cfgfile);
        long ops = numops(net);
        printf("Floating Point Operations: %ld
    ", ops);
        printf("Floating Point Operations: %.2f Bn
    ", (float)ops/1000000000.);
    }
    
    void oneoff(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = parse_network_cfg(cfgfile);
        int oldn = net->layers[net->n - 2].n;
        int c = net->layers[net->n - 2].c;
        scal_cpu(oldn*c, .1, net->layers[net->n - 2].weights, 1);
        scal_cpu(oldn, 0, net->layers[net->n - 2].biases, 1);
        net->layers[net->n - 2].n = 11921;
        net->layers[net->n - 2].biases += 5;
        net->layers[net->n - 2].weights += 5*c;
        if(weightfile){
            load_weights(net, weightfile);
        }
        net->layers[net->n - 2].biases -= 5;
        net->layers[net->n - 2].weights -= 5*c;
        net->layers[net->n - 2].n = oldn;
        printf("%d
    ", oldn);
        layer l = net->layers[net->n - 2];
        copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
        copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
        copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
        copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
        *net->seen = 0;
        save_weights(net, outfile);
    }
    
    void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
    {
        gpu_index = -1;
        network *net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights_upto(net, weightfile, 0, net->n);
            load_weights_upto(net, weightfile, l, net->n);
        }
        *net->seen = 0;
        save_weights_upto(net, outfile, net->n);
    }
    
    void partial(char *cfgfile, char *weightfile, char *outfile, int max)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 1);
        save_weights_upto(net, outfile, max);
    }
    
    void print_weights(char *cfgfile, char *weightfile, int n)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 1);
        layer l = net->layers[n];
        int i, j;
        //printf("[");
        for(i = 0; i < l.n; ++i){
            //printf("[");
            for(j = 0; j < l.size*l.size*l.c; ++j){
                //if(j > 0) printf(",");
                printf("%g ", l.weights[i*l.size*l.size*l.c + j]);
            }
            printf("
    ");
            //printf("]%s
    ", (i == l.n-1)?"":",");
        }
        //printf("]");
    }
    
    void rescale_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for(i = 0; i < net->n; ++i){
            layer l = net->layers[i];
            if(l.type == CONVOLUTIONAL){
                rescale_weights(l, 2, -.5);
                break;
            }
        }
        save_weights(net, outfile);
    }
    
    void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for(i = 0; i < net->n; ++i){
            layer l = net->layers[i];
            if(l.type == CONVOLUTIONAL){
                rgbgr_weights(l);
                break;
            }
        }
        save_weights(net, outfile);
    }
    
    void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for (i = 0; i < net->n; ++i) {
            layer l = net->layers[i];
            if (l.type == CONVOLUTIONAL && l.batch_normalize) {
                denormalize_convolutional_layer(l);
            }
            if (l.type == CONNECTED && l.batch_normalize) {
                denormalize_connected_layer(l);
            }
            if (l.type == GRU && l.batch_normalize) {
                denormalize_connected_layer(*l.input_z_layer);
                denormalize_connected_layer(*l.input_r_layer);
                denormalize_connected_layer(*l.input_h_layer);
                denormalize_connected_layer(*l.state_z_layer);
                denormalize_connected_layer(*l.state_r_layer);
                denormalize_connected_layer(*l.state_h_layer);
            }
        }
        save_weights(net, outfile);
    }
    
    layer normalize_layer(layer l, int n)
    {
        int j;
        l.batch_normalize=1;
        l.scales = calloc(n, sizeof(float));
        for(j = 0; j < n; ++j){
            l.scales[j] = 1;
        }
        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
        return l;
    }
    
    void normalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for(i = 0; i < net->n; ++i){
            layer l = net->layers[i];
            if(l.type == CONVOLUTIONAL && !l.batch_normalize){
                net->layers[i] = normalize_layer(l, l.n);
            }
            if (l.type == CONNECTED && !l.batch_normalize) {
                net->layers[i] = normalize_layer(l, l.outputs);
            }
            if (l.type == GRU && l.batch_normalize) {
                *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
                *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
                *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
                *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
                *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
                *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
                net->layers[i].batch_normalize=1;
            }
        }
        save_weights(net, outfile);
    }
    
    void statistics_net(char *cfgfile, char *weightfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for (i = 0; i < net->n; ++i) {
            layer l = net->layers[i];
            if (l.type == CONNECTED && l.batch_normalize) {
                printf("Connected Layer %d
    ", i);
                statistics_connected_layer(l);
            }
            if (l.type == GRU && l.batch_normalize) {
                printf("GRU Layer %d
    ", i);
                printf("Input Z
    ");
                statistics_connected_layer(*l.input_z_layer);
                printf("Input R
    ");
                statistics_connected_layer(*l.input_r_layer);
                printf("Input H
    ");
                statistics_connected_layer(*l.input_h_layer);
                printf("State Z
    ");
                statistics_connected_layer(*l.state_z_layer);
                printf("State R
    ");
                statistics_connected_layer(*l.state_r_layer);
                printf("State H
    ");
                statistics_connected_layer(*l.state_h_layer);
            }
            printf("
    ");
        }
    }
    
    void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network *net = load_network(cfgfile, weightfile, 0);
        int i;
        for (i = 0; i < net->n; ++i) {
            layer l = net->layers[i];
            if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) {
                denormalize_convolutional_layer(l);
                net->layers[i].batch_normalize=0;
            }
            if (l.type == CONNECTED && l.batch_normalize) {
                denormalize_connected_layer(l);
                net->layers[i].batch_normalize=0;
            }
            if (l.type == GRU && l.batch_normalize) {
                denormalize_connected_layer(*l.input_z_layer);
                denormalize_connected_layer(*l.input_r_layer);
                denormalize_connected_layer(*l.input_h_layer);
                denormalize_connected_layer(*l.state_z_layer);
                denormalize_connected_layer(*l.state_r_layer);
                denormalize_connected_layer(*l.state_h_layer);
                l.input_z_layer->batch_normalize = 0;
                l.input_r_layer->batch_normalize = 0;
                l.input_h_layer->batch_normalize = 0;
                l.state_z_layer->batch_normalize = 0;
                l.state_r_layer->batch_normalize = 0;
                l.state_h_layer->batch_normalize = 0;
                net->layers[i].batch_normalize=0;
            }
        }
        save_weights(net, outfile);
    }
    
    void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
    {
        network *net = load_network(cfgfile, weightfile, 0);
        image *ims = get_weights(net->layers[0]);
        int n = net->layers[0].n;
        int z;
        for(z = 0; z < num; ++z){
            image im = make_image(h, w, 3);
            fill_image(im, .5);
            int i;
            for(i = 0; i < 100; ++i){
                image r = copy_image(ims[rand()%n]);
                rotate_image_cw(r, rand()%4);
                random_distort_image(r, 1, 1.5, 1.5);
                int dx = rand()%(w-r.w);
                int dy = rand()%(h-r.h);
                ghost_image(r, im, dx, dy);
                free_image(r);
            }
            char buff[256];
            sprintf(buff, "%s/gen_%d", prefix, z);
            save_image(im, buff);
            free_image(im);
        }
    }
    
    void visualize(char *cfgfile, char *weightfile)
    {
        network *net = load_network(cfgfile, weightfile, 0);
        visualize_network(net);
    #ifdef OPENCV
        cvWaitKey(0);
    #endif
    }
    
    int main(int argc, char **argv)
    {
        // argv[0] 指向程序运行的全路径名;argv[1] 指向在DOS命令行中执行程序名后的第一个字符串;argv[2]第二个
        //test_resize("data/bad.jpg");
        //test_box();
        //test_convolutional_layer();
        if(argc < 2){
            fprintf(stderr, "usage: %s <function>
    ", argv[0]);
            return 0;
        }
        gpu_index = find_int_arg(argc, argv, "-i", 0);
        if(find_arg(argc, argv, "-nogpu")) {
            gpu_index = -1;
        }
    
    #ifndef GPU
        gpu_index = -1;
    #else
        if(gpu_index >= 0){
            cuda_set_device(gpu_index);
        }
    #endif
    
        if (0 == strcmp(argv[1], "average")){
            average(argc, argv);
        } else if (0 == strcmp(argv[1], "yolo")){
            run_yolo(argc, argv);
        } else if (0 == strcmp(argv[1], "super")){
            run_super(argc, argv);
        } else if (0 == strcmp(argv[1], "lsd")){
            run_lsd(argc, argv);
        } else if (0 == strcmp(argv[1], "detector")){
            run_detector(argc, argv);
        } else if (0 == strcmp(argv[1], "detect")){
            float thresh = find_float_arg(argc, argv, "-thresh", .5);       //thresh用来控制检测的阈值
            char *filename = (argc > 4) ? argv[4]: 0;
            char *outfile = find_char_arg(argc, argv, "-out", 0);           // 定义在srcutils.c中
            int fullscreen = find_arg(argc, argv, "-fullscreen");
            test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen);      // 函数定义位于detector.c中
            // 命令举例./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
    
            //*修改//
            //output_to_file();
            my_testinsrc();
            //*//
    
        } else if (0 == strcmp(argv[1], "cifar")){
            run_cifar(argc, argv);
        } else if (0 == strcmp(argv[1], "go")){
            run_go(argc, argv);
        } else if (0 == strcmp(argv[1], "rnn")){
            run_char_rnn(argc, argv);
        } else if (0 == strcmp(argv[1], "coco")){
            run_coco(argc, argv);
        } else if (0 == strcmp(argv[1], "classify")){
            predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
        } else if (0 == strcmp(argv[1], "classifier")){
            run_classifier(argc, argv);
        } else if (0 == strcmp(argv[1], "regressor")){
            run_regressor(argc, argv);
        } else if (0 == strcmp(argv[1], "segmenter")){
            run_segmenter(argc, argv);
        } else if (0 == strcmp(argv[1], "art")){
            run_art(argc, argv);
        } else if (0 == strcmp(argv[1], "tag")){
            run_tag(argc, argv);
        } else if (0 == strcmp(argv[1], "3d")){
            composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
        } else if (0 == strcmp(argv[1], "test")){
            test_resize(argv[2]);
        } else if (0 == strcmp(argv[1], "captcha")){
            run_captcha(argc, argv);
        } else if (0 == strcmp(argv[1], "nightmare")){
            run_nightmare(argc, argv);
        } else if (0 == strcmp(argv[1], "rgbgr")){
            rgbgr_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "reset")){
            reset_normalize_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "denormalize")){
            denormalize_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "statistics")){
            statistics_net(argv[2], argv[3]);
        } else if (0 == strcmp(argv[1], "normalize")){
            normalize_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "rescale")){
            rescale_net(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "ops")){
            operations(argv[2]);
        } else if (0 == strcmp(argv[1], "speed")){
            speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
        } else if (0 == strcmp(argv[1], "oneoff")){
            oneoff(argv[2], argv[3], argv[4]);
        } else if (0 == strcmp(argv[1], "oneoff2")){
            oneoff2(argv[2], argv[3], argv[4], atoi(argv[5]));
        } else if (0 == strcmp(argv[1], "print")){
            print_weights(argv[2], argv[3], atoi(argv[4]));
        } else if (0 == strcmp(argv[1], "partial")){
            partial(argv[2], argv[3], argv[4], atoi(argv[5]));
        } else if (0 == strcmp(argv[1], "average")){
            average(argc, argv);
        } else if (0 == strcmp(argv[1], "visualize")){
            visualize(argv[2], (argc > 3) ? argv[3] : 0);
        } else if (0 == strcmp(argv[1], "mkimg")){
            mkimg(argv[2], argv[3], atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), argv[7]);
        } else if (0 == strcmp(argv[1], "imtest")){
            test_resize(argv[2]);
        } else {
            fprintf(stderr, "Not an option: %s
    ", argv[1]);
        }
        return 0;
    }
    View Code

    可成功编译并运行

    (3)修改代码的第三次尝试

    在darknet下新建目录my, 用于存放自己新写的代码. 新建两个文件my_tofile.c与my_file.h, 其内容如下

    //my_tofile.h
    
    #ifndef TOFILE
    #define TOFLIE
    #include "darknet.h"
    
    void my_output_to_file();
    
    
    #endif
    
    
    // my_tofile.c
    #include "my_tofile.h"
    
    void my_output_to_file()
    {
        FILE *fp;
        fp=fopen("output.txt","w");
        fprintf(fp,"adfsss");
        fclose(fp);
        printf("test in \my
    ");
    }
    View Code

    修改Makefile文件, 在最后对函数进行声明, 在VPATH处添加路径 VPATH=./src/:./examples:./my , 修改完后内容如下

    GPU=0
    CUDNN=0
    OPENCV=0
    OPENMP=0
    DEBUG=0
    
    ARCH= -gencode arch=compute_30,code=sm_30 
          -gencode arch=compute_35,code=sm_35 
          -gencode arch=compute_50,code=[sm_50,compute_50] 
          -gencode arch=compute_52,code=[sm_52,compute_52]
    #      -gencode arch=compute_20,code=[sm_20,sm_21]  This one is deprecated?
    
    # This is what I use, uncomment if you know your arch and want to specify
    # ARCH= -gencode arch=compute_52,code=compute_52
    
    VPATH=./src/:./examples:./my
    # VTATH用来告诉make,源文件的路径, 参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139
    SLIB=libdarknet.so
    ALIB=libdarknet.a
    EXEC=darknet
    OBJDIR=./obj/
    
    CC=gcc
    NVCC=nvcc 
    AR=ar
    ARFLAGS=rcs
    OPTS=-Ofast
    LDFLAGS= -lm -pthread       #gcc等编译器会用到的一些优化参数,也可以在里面指定库文件的位置
    COMMON= -Iinclude/ -Isrc/
    CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC   #指定头文件(.h文件)的路径,如:CFLAGS=-I/usr/include -I/path/include。
    
    ifeq ($(OPENMP), 1) 
    CFLAGS+= -fopenmp
    endif
    
    ifeq ($(DEBUG), 1) 
    OPTS=-O0 -g
    endif
    
    CFLAGS+=$(OPTS)
    
    ifeq ($(OPENCV), 1) 
    COMMON+= -DOPENCV
    CFLAGS+= -DOPENCV
    LDFLAGS+= `pkg-config --libs opencv` 
    COMMON+= `pkg-config --cflags opencv` 
    endif
    
    ifeq ($(GPU), 1) 
    COMMON+= -DGPU -I/usr/local/cuda/include/
    CFLAGS+= -DGPU
    LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
    endif
    
    ifeq ($(CUDNN), 1) 
    COMMON+= -DCUDNN 
    CFLAGS+= -DCUDNN
    LDFLAGS+= -lcudnn
    endif
    
    OBJ=my_tofile.o    my_testinsrc.o  gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o  lstm_layer.o l2norm_layer.o yolo_layer.o
    EXECOBJA=my_test.o  captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
    ifeq ($(GPU), 1) 
    LDFLAGS+= -lstdc++ 
    OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
    endif
    
    EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA))   #加前缀函数: $(addprefix <prefix>,<names...>),OBJDIR是obj存放的地址
    OBJS = $(addprefix $(OBJDIR), $(OBJ))
    DEPS = $(wildcard src/*.h) Makefile include/darknet.h
    
    #all: obj backup results $(SLIB) $(ALIB) $(EXEC)
    all: obj  results $(SLIB) $(ALIB) $(EXEC)
    
    
    $(EXEC): $(EXECOBJ) $(ALIB)
        $(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB)
    
    $(ALIB): $(OBJS)
        $(AR) $(ARFLAGS) $@ $^
    
    $(SLIB): $(OBJS)
        $(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS)
    
    $(OBJDIR)%.o: %.c $(DEPS)
        $(CC) $(COMMON) $(CFLAGS) -c $< -o $@
    
    $(OBJDIR)%.o: %.cu $(DEPS)
        $(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
    
    obj:
        mkdir -p obj
    backup:
        mkdir -p backup
    results:
        mkdir -p results
    
    .PHONY: clean
    
    clean:
        rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*
    View Code

    最后在exampes中的文件中进行调用, 可顺利编译并运行

    ├── examples
    │   ├── darknet.c(主程序)
    │   │── xxx1.c
    │   └── xxx2.c
    │
    ├── include
    │   ├── darknet.h
    │ 
    │ 
    ├── Makefile
    │
    ├── my
    │   ├── my_zzz1.c
    │   │── my_zzz1.h
    │   └── ......
    │ 
    └── src
        ├── yyy1.c
        ├── yyy2.h
        └──......

    最终代码结构会如下所示

  • 相关阅读:
    C#与服务器建立会话,获取SessionId(临时cookie值)
    c# 登录带验证码网站
    ASP读取CSV文件 并添加到数据库
    淘宝开放平台正式环境获取数据(二)
    DragDrop 注册失败的解决方法 转
    c# 获取网站验证码图片
    淘宝开放平台.NET版SDK 测试类
    淘宝开放平台正式环境获取数据(一)
    sqlhelper源码
    博客园看到的socket基本原理
  • 原文地址:https://www.cnblogs.com/vactor/p/8722367.html
Copyright © 2011-2022 走看看