zoukankan      html  css  js  c++  java
  • 算数-集合平均值不等式

    设(x_1,x_2,x_3.....x_n)为n个正整数,它们的算数平均值为(A_n=frac{x_1+x_2+x_3+.....+x_n}{n}),它们的几何平均值为(G_n=(x_1x_2x_3.....x_n)^{1/n},对于任意正实数x_1,x_2,x_3.....x_n)总有(A_n≥G_n)

    证明:(ln(frac{G_n}{A_n}))

    (=ln(frac{x_1x_2x_3...x_n}{A_n^n})^{1/n})

    (=(1/n)ln(frac{x_1x_2x_3.....x_n}{A_n^n}))

    (=(1/n)ln(frac{x_1}{A_n}*frac{x_2}{A_n}*frac{x_3}{A_n}.....frac{x_n}{A_n}))

    (=(1/n)(lnfrac{x_1}{A_n}+lnfrac{x_2}{A_n}+lnfrac{x_3}{A_n}+.....+lnfrac{x_n}{A_n}))

    (≤(1/n)(frac{x_1}{A_n}-1+frac{x_2}{A_n}-1+frac{x_3}{A_n}-1+.....+frac{x_n}{A_n}-1))

    (=(1/n)(frac{x_1+x_2+x_3+.....+x_n}{A_n}-n))

    (=(1/n)(n-n))

    =0

    即(ln(frac{G_n}{A_n})≤0),因为(A_n,G_n)均为正实数,所以(A_n≥G_n),当且仅当(lnfrac{x_m}{A_n}=frac{x_m}{A_n}-1),其中m=1,2,3.....,n,即对于任意m=1,2,3,.....m,都有(lnfrac{x_m}{A_n}=0),即(frac{x_m}{A_n}=1),即(x_m=A_n),即(x_1=x_2=x_3=.....=x_n)时取等。

  • 相关阅读:
    2021/4/6
    2021/4/5
    2021/4/2
    2021/4/1
    2021/3/31
    2021/3/30
    2021/3/29重构
    总结
    js 座机正则
    uni-app 条件编译
  • 原文地址:https://www.cnblogs.com/valar-morghulis/p/13463166.html
Copyright © 2011-2022 走看看