zoukankan      html  css  js  c++  java
  • 06 Logistic Regression

    回归与分类

    1. 回归->分类:将实数空间(R)映射到([0,1])
    2. Logistic函数(y=frac{1}{1+e^{-x}})

    损失函数

    线性回归的损失函数

    [loss = (hat{y}-y)^{2}=(x*omega-y)^{2} ]

    二分类的损失函数(交叉熵)

    [loss = -(yloghat{y}+(1-y)log(1-hat{y})) ]

    Mini-Batch损失函数

    对二分类的损失函数求均值

    [loss = -frac{1}{N}sum_{n=1}^N(y_{n}loghat{y_n}+(1-y_{n}log(1-hat{y_n}))) ]

    与线性回归的区别

    1. 在前馈中多了一个sigmoid的处理
    2. 损失函数不再是MSELoss,而是BSELoss以求交叉熵

    代码实现

    训练数据是x表示学习时间,y表示是否合格(0不合格,1合格)

    from abc import ABC
    import torch
    import matplotlib.pyplot as plt
    
    x_data = torch.Tensor([[1.0], [2.0], [3.0]])
    y_data = torch.Tensor([[0], [0], [1]])
    
    
    class LogisticRegressionModel(torch.nn.Module, ABC):
        def __init__(self):
            super(LogisticRegressionModel, self).__init__()
            self.linear = torch.nn.Linear(1, 1)
    
        def forward(self, x):
            y_pred = torch.sigmoid(self.linear(x))
            return y_pred
    
    
    model = LogisticRegressionModel()
    
    criterion = torch.nn.BCELoss(size_average=False)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
    
    loss_list = []
    for epoch in range(1000):
        y_pred = model(x_data)
        loss = criterion(y_pred, y_data)
        print(epoch, loss.item())
    
        loss_list.append(loss.item())
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    epoch_list = list(range(1000))
    plt.plot(epoch_list, loss_list)
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.show()
    

    测试

    import numpy as np
    import matplotlib.pyplot as plt
    
    x = np.linspace(0, 10, 200)
    x_test = torch.Tensor(x).view(200, 1) # reshape 200行 1列
    y_test = model(x_test)
    y = y_test.data.numpy()
    plt.plot(x, y)
    plt.plot([0, 10], [0.5, 0.5], c='r')
    plt.xlabel("hours")
    plt.ylabel('Probability of Pass')
    plt.show()
    

    Reference

    https://www.bilibili.com/video/BV1Y7411d7Ys?p=6

  • 相关阅读:
    硬件的那些事
    seaJS学习资料参考
    nodejs前端自动化构建
    移动端开发的坑【持续更新...】
    【retina】手机上 1PX 边框
    【面试季之三】IE6兼容问题
    【面试季二】前端性能优化
    【面试季一】若干前端面试题
    【面试的坑】行内元素是否可以设置宽高
    Bootstrap和IE何时能相亲相爱啊~
  • 原文地址:https://www.cnblogs.com/vict0r/p/13604033.html
Copyright © 2011-2022 走看看