zoukankan      html  css  js  c++  java
  • LFW精确度验证__c++双线程读写txt

    此篇内容承接上篇:LFW精确度验证__python读写txt

    参考博客:

    void类型和void* 的用法

    C++ 多线程

    我在百度,知乎,github上搜了下lfw验证准确率的方法,资源很少,所以我将我感觉有用的链接都整理到了下面:

    Labeled Faces in the Wild 官方网站:http://vis-www.cs.umass.edu/lfw/#views

    pairs.txt 官方介绍:http://vis-www.cs.umass.edu/lfw/README.txt

    LFW介绍整理:https://blog.csdn.net/jobbofhe/article/details/79416661

    基于VGG-Face的人脸识别测试:https://blog.csdn.net/u013078356/article/details/60955197   【主要参考】

    LFW的正确率,使用方法:https://blog.csdn.net/u014696921/article/details/70161852   【主要参考】

    LFW_API:https://github.com/jakezhaojb/LFW_API

     

    具体参考工程:https://github.com/KangKangLoveCat/insightface_ncnn

    
    
    #include <vector>
    #include <iostream>
    #include <opencv2/opencv.hpp>
    #include "arcface.h"
    #include "mtcnn.h"
    
    #include <algorithm>
    #include <cmath>
    #include <fstream>
    #include <pthread.h>
    
    using namespace cv;
    using namespace std;
    
    #define PAIR_LINES 6000
    
    vector< pair<string, string> > pos_vec;
    vector< pair<string, string> > neg_vec;
    
    MtcnnDetector detector("../models");
    Arcface arc("../models");
    
    cv::Mat ncnn2cv(ncnn::Mat img)
    {
        unsigned char pix[img.h * img.w * 3];
        img.to_pixels(pix, ncnn::Mat::PIXEL_BGR);
        cv::Mat cv_img(img.h, img.w, CV_8UC3);
        for (int i = 0; i < cv_img.rows; i++)
        {
            for (int j = 0; j < cv_img.cols; j++)
            {
                cv_img.at<cv::Vec3b>(i,j)[0] = pix[3 * (i * cv_img.cols + j)];
                cv_img.at<cv::Vec3b>(i,j)[1] = pix[3 * (i * cv_img.cols + j) + 1];
                cv_img.at<cv::Vec3b>(i,j)[2] = pix[3 * (i * cv_img.cols + j) + 2];
            }
        }
        return cv_img;
    }
    
    void preprocess(){
        fstream label("./label.txt");
        
        string left, right;
        int num;
    
        for(int i=0; i<PAIR_LINES; i++){
            label >> left >> right >> num;
            if(num == 1)    
                pos_vec.push_back(make_pair(left, right));
            else
                neg_vec.push_back(make_pair(left, right));
        }
    }
    
    void* pos(void* args){
        fstream pos("./pos_scores.txt", fstream::in | fstream::out | fstream::trunc);
        
        string pos_left, pos_right, neg_left, neg_right;
        int pair_id = 0;
        int num=0;
        Mat img1, img2;
    
        ncnn::Mat ncnn_img1, ncnn_img2, det1, det2;
        vector<FaceInfo> results1, results2;
        vector<float> feature1, feature2;
    
        for(auto pos_it = pos_vec.begin(); pos_it != pos_vec.end(); ++pos_it){
            pair_id++;
            pos_left = pos_it->first;
            pos_right = pos_it->second;
            img1 = imread(pos_left);
            img2 = imread(pos_right);
            ncnn_img1 = ncnn::Mat::from_pixels(img1.data, ncnn::Mat::PIXEL_BGR, img1.cols, img1.rows);
            ncnn_img2 = ncnn::Mat::from_pixels(img2.data, ncnn::Mat::PIXEL_BGR, img2.cols, img2.rows);
            results1 = detector.Detect(ncnn_img1);
            results2 = detector.Detect(ncnn_img2);
            if(results1.size()==0 || results2.size()==0) continue;
            det1 = preprocess(ncnn_img1, results1[0]);
            det2 = preprocess(ncnn_img2, results2[0]);
            feature1 = arc.getFeature(det1);
            feature2 = arc.getFeature(det2);
            float cal = calcSimilar(feature1, feature2);
            if(cal<0.35) ++num;
            pos << pair_id <<"	"<< cal << "	" <<pos_left<<"	"<<pos_right<<endl;
            cout << pair_id << "pos finish" <<endl;
        }
        pos << pair_id << "	" << num << endl;
        pos.close();
    }
    
    void* neg(void* args){
        fstream neg("./neg_scores.txt", fstream::in | fstream::out | fstream::trunc);
        
        string pos_left, pos_right, neg_left, neg_right;
        int pair_id = 0;
        int num=0;
        Mat img1, img2;
    
        ncnn::Mat ncnn_img1, ncnn_img2, det1, det2;
        vector<FaceInfo> results1, results2;
        vector<float> feature1, feature2;
    
        for(auto neg_it = neg_vec.begin(); neg_it != neg_vec.end(); ++neg_it){
            pair_id++;
            neg_left = neg_it->first;
            neg_right = neg_it->second;
            img1 = imread(neg_left);
            img2 = imread(neg_right);
            ncnn_img1 = ncnn::Mat::from_pixels(img1.data, ncnn::Mat::PIXEL_BGR, img1.cols, img1.rows);
            ncnn_img2 = ncnn::Mat::from_pixels(img2.data, ncnn::Mat::PIXEL_BGR, img2.cols, img2.rows);
            results1 = detector.Detect(ncnn_img1);
            results2 = detector.Detect(ncnn_img2);
            if(results1.size()==0 || results2.size()==0) continue;
            det1 = preprocess(ncnn_img1, results1[0]);
            det2 = preprocess(ncnn_img2, results2[0]);
            feature1 = arc.getFeature(det1);
            feature2 = arc.getFeature(det2);
            float cal = calcSimilar(feature1, feature2);
            if(cal>0.35) ++num;
            neg << pair_id <<"	"<< cal << "	" <<neg_left<<"	"<<neg_right<<endl;
            cout << pair_id << "neg finish" <<endl;
        }
        neg << pair_id << "	" << num << endl;
        neg.close();
    }
    
    int main(int argc, char* argv[])
    {
        preprocess();
        pthread_t tids[2];
        int ret1 = pthread_create(&tids[0], NULL, pos, NULL);
        if(ret1 != 0)
            cout<<"pthread_create_error: error_code="<< ret1<<endl;
        int ret2 = pthread_create(&tids[1], NULL, neg, NULL);
        if(ret2 != 0)
            cout<<"pthread_create_error: error_code="<< ret2<<endl; 
        pthread_exit(NULL);
        return 0;
    }

    可以看到双线程的效果

    一共6000组图片,3000组同人,3000组不同人,考虑到图片的质量不是很高(本身就是通过网络收集,像素也低)

    加上图片有少量采集错误(不同人的照片错归为了同一人,影响测试结果的大概不到10组),所以我设置了一个比较低的阈值0.35进行测试

     

    pos_scores.txt

    3000组正样本中,有51组相似度低于0.35

    neg_scores.txt

    3000组负样本中,有0组相似度高于0.35,我肉眼搜索了一下最高0.30

    总的来看6000组在阈值0.35的精确度为99.15,阈值设为0.3应该会有更好的表现

    由于没有找到比较可靠的资料,所以测试方案是我自己设计的,虽然感觉这种测试精确度的方法不太科学,但相似度并没有一个准确的衡量方法

    此方案算是1:1验证,也可以当作1:n来测试,但计算量会大些

  • 相关阅读:
    音频文件的属性
    判断UITextField.text是否为空(转)
    digital audio properties
    对scrollView的属性contentSize contentOffset contentInset个人理解
    OC定义变参函数
    va_list、va_start、va_arg、va_end的原理与使用(转载)
    游标笔记
    oracle中删除重复数据
    IIS无法启动,错误代码127[转自Alibaba DBA Team]
    推进游标是Fetch不是Petch!~!
  • 原文地址:https://www.cnblogs.com/exciting/p/11115284.html
Copyright © 2011-2022 走看看