zoukankan      html  css  js  c++  java
  • Hadoop学习之路(6)MapReduce自定义分区实现

    MapReduce自带的分区器是HashPartitioner
    原理:先对map输出的key求hash值,再模上reduce task个数,根据结果,决定此输出kv对,被匹配的reduce任务取走。
    在这里插入图片描述
    自定义分分区需要继承Partitioner,复写getpariton()方法
    自定义分区类:
    在这里插入图片描述
    注意:map的输出是<K,V>键值对
    其中int partitionIndex = dict.get(text.toString())partitionIndex是获取K的值

    附:被计算的的文本

    Dear Dear Bear Bear River Car Dear Dear  Bear Rive
    Dear Dear Bear Bear River Car Dear Dear  Bear Rive
    

    需要在main函数中设置,指定自定义分区类
    在这里插入图片描述
    自定义分区类:

    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Partitioner;
    import java.util.HashMap;
    public class CustomPartitioner extends Partitioner<Text, IntWritable> {
        public static HashMap<String, Integer> dict = new HashMap<String, Integer>();
        //Text代表着map阶段输出的key,IntWritable代表着输出的值
        static{
            dict.put("Dear", 0);
            dict.put("Bear", 1);
            dict.put("River", 2);
            dict.put("Car", 3);
        }
        public int getPartition(Text text, IntWritable intWritable, int i) {
            //
            int partitionIndex = dict.get(text.toString());
            return partitionIndex;
        }
    }
    

    注意:map的输出结果是键值对<K,V>,int partitionIndex = dict.get(text.toString());中的partitionIndex是map输出键值对中的键的值,也就是K的值。
    Maper类:

    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    import java.io.IOException;
    
    public class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable> {
        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            String[] words = value.toString().split("	");
            for (String word : words) {
                // 每个单词出现1次,作为中间结果输出
                context.write(new Text(word), new IntWritable(1));
            }
        }
    }
    

    Reducer类:

    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    import java.io.IOException;
    public class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable> {
        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            String[] words = value.toString().split("	");
            for (String word : words) {
                // 每个单词出现1次,作为中间结果输出
                context.write(new Text(word), new IntWritable(1));
            }
        }
    }
    

    main函数:

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import java.io.IOException;
    public class WordCountMain {
        public static void main(String[] args) throws IOException,
                ClassNotFoundException, InterruptedException {
            if (args.length != 2 || args == null) {
                System.out.println("please input Path!");
                System.exit(0);
            }
            Configuration configuration = new Configuration();
            configuration.set("mapreduce.job.jar","/home/bruce/project/kkbhdp01/target/com.kaikeba.hadoop-1.0-SNAPSHOT.jar");
            Job job = Job.getInstance(configuration, WordCountMain.class.getSimpleName());
            // 打jar包
            job.setJarByClass(WordCountMain.class);
            // 通过job设置输入/输出格式
            //job.setInputFormatClass(TextInputFormat.class);
            //job.setOutputFormatClass(TextOutputFormat.class);
            // 设置输入/输出路径
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            // 设置处理Map/Reduce阶段的类
            job.setMapperClass(WordCountMap.class);
            //map combine
            //job.setCombinerClass(WordCountReduce.class);
            job.setReducerClass(WordCountReduce.class);
            //如果map、reduce的输出的kv对类型一致,直接设置reduce的输出的kv对就行;如果不一样,需要分别设置map, reduce的输出的kv类型
            //job.setMapOutputKeyClass(.class)
            // 设置最终输出key/value的类型m
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            job.setPartitionerClass(CustomPartitioner.class);
            job.setNumReduceTasks(4);
            // 提交作业
            job.waitForCompletion(true);
    
        }
    }
    

    main函数参数设置:
    在这里插入图片描述

  • 相关阅读:
    iOS sqlite数据库使用
    vsts 自动部署到Azure
    中国区的Azure添加到 VSTS 的 Service Endpoint
    修改vs17中的cordova模板
    升级vs17中的cordova-simulate
    cordova 从xcode7迁移到xcode8
    自杀程序&递归删除目录
    如何升级cordova插件
    在ubuntu on windows 上安装jekyll
    gitphp日期乱码解决方案
  • 原文地址:https://www.cnblogs.com/victordata/p/12112494.html
Copyright © 2011-2022 走看看