zoukankan      html  css  js  c++  java
  • Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维

    引言

    • 这段时间来,看了西瓜书、蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼。于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力。
    • 我个人的计划是先从简单的数据集入手如手写数字识别、泰坦尼克号、房价预测,这些目前已经有丰富且成熟的方案可以参考,之后关注未来就业的方向如计算广告、点击率预测,有合适的时机,再与小伙伴一同参加线上比赛。

    数据集

    介绍

    1579557021617

    • MNIST ("Modified National Institute of Standards and Technology")是计算机视觉中最典型的数据集之一,其一共包含训练集train.csv,测试集test.csv和提交示例sample_submission.csvcsv是一种数据格式,以逗号作为文件的分隔值。

    • 训练集train.csv包含4000028*28=784的图片,图片像素值为0-255,每张图片有对应的标签,其数据格式如下,可以看作是一个40000 * 785的矩阵,第一列存放标签;

      1579557097136

    • 测试集test.csv包含2800028*28=784的图片,其不提供标签,矩阵维度为28000*784

    读取数据集

    观察到不同方案中数据的读取方法各不同,这里小结一下。

    • csv
      def loadTrainData():
          l=[]
          with open('/kaggle/input/digit-recognizer/train.csv') as file:
              lines = csv.reader(file)
              for line in lines:
                  l.append(line)
    
    • open
      # load csv files to numpy arrays
      def load_data(data_dir):
          train_data = open(data_dir + "train.csv").read()
    
    • numpy
      def load_data(path):
          with np.load(path) as f:
              x_train, y_train = f['x_train'], f['y_train']
              x_test, y_test = f['x_test'], f['y_test']
              return (x_train, y_train), (x_test, y_test)
    
    • panda
      train = pd.read_csv('../input/train.csv')
    

    K近邻算法KNN

    • 这里不再介绍kNN的原理,贴一个简洁的实现,参考自https://blog.csdn.net/u012162613/article/details/41929171,其主要采用了二值化、L2范数作为距离度量。

    实现A

      from numpy import *
      import csv
      
      # 读取训练集
      def loadTrainData():
          l=[]
          with open('/kaggle/input/digit-recognizer/train.csv') as file:
              lines = csv.reader(file)
              for line in lines:
                  l.append(line)
              l.remove(l[0])
              l=array(l)
              data, label = l[:,1:], l[:,0]
              label = label[:,newaxis]
              a = normalizing(toInt(data))
              b = toInt(label)
              return a, b
          
      # 字符转整形
      def toInt(array):
          array = mat(array)
          m,n = shape(array)
          newArray = zeros((m,n))
          for i in range(m):
              for j in range(n):
                  newArray[i,j]=int(array[i,j])
          return newArray
      
      # 二值化处理
      def normalizing(array):
          m,n = shape(array)
          for i in range(m):
              for j in range(n):
                  if array[i,j] != 0:
                      array[i,j]=1
          return array
      
      # 加载测试集
      def loadTestData():
          l=[]
          with open('/kaggle/input/digit-recognizer/test.csv') as file:
              lines = csv.reader(file)
              for line in lines:
                  l.append(line)
              l.remove(l[0])
              l=array(l)
              data=l
              return normalizing(toInt(data))
      
      def loadTestResult():
          l=[]
          with open('/kaggle/input/digit-recognizer/sample_submission.csv') as file:
              lines = csv.reader(file)
              for line in lines:
                  l.append(line)
              l.remove(l[0])
              l=array(l)
              label=l[:,1]
              label = label[:, newaxis]
              return toInt(label)
      
      # 保存结果
      def saveResult(result):
          with open('/kaggle/working/knn.csv', 'w', newline='') as myFile:
              myWriter = csv.writer(myFile)
              myWriter.writerow(['ImageId','Label'])
              for i, label in enumerate(result):
                  tmp = [i+1, int(label)]
                  myWriter.writerow(tmp)
      
      # kNN分类
      def classify(inX, dataSet, labels, k):
          inX = mat(inX)
          dataSet = mat(dataSet)
          labels = mat(labels)
          dataSetSize = dataSet.shape[0]
          diffMat = tile(inX, (dataSetSize, 1)) - dataSet
      
          spDiffMat = array(diffMat) ** 2
          spDistances = spDiffMat.sum(axis=1)
          
      	#计算L2距离
          distances = spDistances ** 0.5
          sortedDistIndicies = distances.argsort()
          classCount = {}
          for i in range(k):
              voteIlabel = labels[sortedDistIndicies[i],0]
              classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
          sortedClassCount = sorted(classCount.items(), key=lambda item:item[1], reverse=True)
          return sortedClassCount[0][0]
      
      # 主函数
      def handwritingClassTest():
          trainData,trainLabel=loadTrainData()
          testData =loadTestData()
          testLabel = loadTestResult()
          m,n=shape(testData)
          errorCount=0
          resultList=[]
          for i in range(m):
              classifierResult = classify(testData[i], trainData, trainLabel, 1)
              resultList.append(classifierResult)
              print("the classifier for %d came back with: %d, the real answer is: %d" % (i, classifierResult, testLabel[i]))
              if (classifierResult != testLabel[i]): errorCount += 1.0
          print("
    the total number of errors is: %d" % errorCount)
          print("
    the total error rate is: %f" % (errorCount/float(m)))
          saveResult(resultList)
      
      handwritingClassTest()
    
    • 结果:k=5,准确率96.40%;k=1,准确率96.27%。PS:按照个人理解,K值越小,结果应该更高才对。随后我换了另一个实现,其采用了numpy实现矩阵计算,运行速度比上面的代码块多了。

    实现B

      import numpy as np
      import matplotlib.pyplot as plt
      from collections import Counter
      import time
      
      %matplotlib inline
      plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
      plt.rcParams['image.interpolation'] = 'nearest'
      plt.rcParams['image.cmap'] = 'gray'
      
      # load csv files to numpy arrays
      def load_data(data_dir):
          train_data = open(data_dir + "train.csv").read()
          train_data = train_data.split("
    ")[1:-1]
          train_data = [i.split(",") for i in train_data]
          # print(len(train_data))
          X_train = np.array([[int(i[j]) for j in range(1,len(i))] for i in train_data])
          y_train = np.array([int(i[0]) for i in train_data])
      
          # print(X_train.shape, y_train.shape)
      
          test_data = open(data_dir + "test.csv").read()
          test_data = test_data.split("
    ")[1:-1]
          test_data = [i.split(",") for i in test_data]
          # print(len(test_data))
          X_test = np.array([[int(i[j]) for j in range(0,len(i))] for i in test_data])
      
          # print(X_test.shape)
      
          return X_train, y_train, X_test
      
      
      class simple_knn():
          "a simple kNN with L2 distance"
      
          def __init__(self):
              pass
      
          def train(self, X, y):
              self.X_train = X
              self.y_train = y
      
          def predict(self, X, k=1):
              dists = self.compute_distances(X)
              # print("computed distances")
      
              num_test = dists.shape[0]
              y_pred = np.zeros(num_test)
      
              for i in range(num_test):
                  k_closest_y = []
                  labels = self.y_train[np.argsort(dists[i,:])].flatten()
                  # find k nearest lables
                  k_closest_y = labels[:k]
      
                  # out of these k nearest lables which one is most common
                  # for 5NN [1, 1, 1, 2, 3] returns 1
                  # break ties by selecting smaller label
                  # for 5NN [1, 2, 1, 2, 3] return 1 even though 1 and 2 appeared twice.
                  c = Counter(k_closest_y)
                  y_pred[i] = c.most_common(1)[0][0]
      
              return(y_pred)
      
          def compute_distances(self, X):
              num_test = X.shape[0]
              num_train = self.X_train.shape[0]
      
              dot_pro = np.dot(X, self.X_train.T)
              sum_square_test = np.square(X).sum(axis = 1)
              sum_square_train = np.square(self.X_train).sum(axis = 1)
              dists = np.sqrt(-2 * dot_pro + sum_square_train + np.matrix(sum_square_test).T)
      
              return(dists)
    
      # runs for 13 minutes
      predictions = []
      
      for i in range(int(len(X_test)/(2*batch_size))):
          # predicts from i * batch_size to (i+1) * batch_size
          print("Computing batch " + str(i+1) + "/" + str(int(len(X_test)/batch_size)) + "...")
          tic = time.time()
          predts = classifier.predict(X_test[i * batch_size:(i+1) * batch_size], k)
          toc = time.time()
          predictions = predictions + list(predts)
      #     print("Len of predictions: " + str(len(predictions)))
          print("Completed this batch in " + str(toc-tic) + " Secs.")
      
      print("Completed predicting the test data.")
      
      # runs for 13 minutes
      # uncomment predict lines to predict second half of test data
      
      for i in range(int(len(X_test)/(2*batch_size)), int(len(X_test)/batch_size)):
          # predicts from i * batch_size to (i+1) * batch_size
          print("Computing batch " + str(i+1) + "/" + str(int(len(X_test)/batch_size)) + "...")
          tic = time.time()
          predts = classifier.predict(X_test[i * batch_size:(i+1) * batch_size], k)
          toc = time.time()
          predictions = predictions + list(predts)
      #     print("Len of predictions: " + str(len(predictions)))
          print("Completed this batch in " + str(toc-tic) + " Secs.")
      
      print("Completed predicting the test data.")
      
      out_file = open("predictions.csv", "w")
      out_file.write("ImageId,Label
    ")
      for i in range(len(predictions)):
          out_file.write(str(i+1) + "," + str(int(predictions[i])) + "
    ")
      out_file.close()
    
    • 结果:K=5,96.90%,k=1,97.11%;相同的k值,实现B的准确率比实现A要高,原因是实现B未采用二值化,保留了更多的数字图像信息。

    卷积神经网络CNN

    • 这里主要基于Pytorch实现。

    数据加载

      # Construct the transform
      import torchvision.transforms as transforms
      from   PIL import Image
      transform = transforms.Compose([
              transforms.ToTensor(),
              transforms.Normalize((0.5,), (0.5,))
          ])
      
      # Get the device we're training on
      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      
      def get_digits(df):
          """Loads images as PyTorch tensors"""
          # Load the labels if they exist 
          # (they wont for the testing data)
          labels = []
          start_inx = 0
          if 'label' in df.columns:
              labels = [v for v in df.label.values]
              start_inx = 1
              
          # Load the digit information
          digits = []
          for i in range(df.pixel0.size):
              digit = df.iloc[i].astype(float).values[start_inx:]
              digit = np.reshape(digit, (28,28))
              digit = transform(digit).type('torch.FloatTensor')
              if len(labels) > 0:
                  digits.append([digit, labels[i]])
              else:
                  digits.append(digit)
      
          return digits
    
      # Load the training data
      train_X = get_digits(train)
      
      # Some configuration parameters
      num_workers = 0    # number of subprocesses to use for data loading
      batch_size  = 64   # how many samples per batch to load
      valid_size  = 0.2  # percentage of training set to use as validation
      
      # Obtain training indices that will be used for validation
      num_train = len(train_X)
      indices   = list(range(num_train))
      np.random.shuffle(indices)
      split     = int(np.floor(valid_size * num_train))
      train_idx, valid_idx = indices[split:], indices[:split]
      
      # Define samplers for obtaining training and validation batches
      from torch.utils.data.sampler import SubsetRandomSampler
      train_sampler = SubsetRandomSampler(train_idx)
      valid_sampler = SubsetRandomSampler(valid_idx)
      
      # Construct the data loaders
      train_loader = torch.utils.data.DataLoader(train_X, batch_size=batch_size,
                          sampler=train_sampler, num_workers=num_workers)
      valid_loader = torch.utils.data.DataLoader(train_X, batch_size=batch_size, 
                          sampler=valid_sampler, num_workers=num_workers)
      
      # Test the size and shape of the output
      dataiter = iter(train_loader)
      images, labels = dataiter.next()
      print(type(images))
      print(images.shape)
      print(labels.shape)
      
    
    

    网络模型

    • 网络的结果主要分为cnn_layersfc_layers,个人认为fc_layers有些繁杂。
      # Import the necessary modules
      import torch.nn as nn
      
      def calc_out(in_layers, stride, padding, kernel_size, pool_stride):
          """
          Helper function for computing the number of outputs from a
          conv layer
          """
          return int((1+(in_layers - kernel_size + (2*padding))/stride)/pool_stride)
      
      # define the CNN architecture
      class Net(nn.Module):
          def __init__(self):
              super(Net, self).__init__()
      
              # Some helpful values
              inputs      = [1,32,64,64]
              kernel_size = [5,5,3]
              stride      = [1,1,1]
              pool_stride = [2,2,2]
      
              # Layer lists
              layers = []
      
              self.out   = 28
              self.depth = inputs[-1]
              for i in range(len(kernel_size)):
                  # Get some variables
                  padding = int(kernel_size[i]/2)
      
                  # Define the output from this layer
                  self.out = calc_out(self.out, stride[i], padding,
                                      kernel_size[i], pool_stride[i])
      
                  # convolutional layer 1
                  layers.append(nn.Conv2d(inputs[i], inputs[i], kernel_size[i], 
                                             stride=stride[i], padding=padding))
                  layers.append(nn.ReLU())
                  
                  # convolutional layer 2
                  layers.append(nn.Conv2d(inputs[i], inputs[i+1], kernel_size[i], 
                                             stride=stride[i], padding=padding))
                  layers.append(nn.ReLU())
                  # maxpool layer
                  layers.append(nn.MaxPool2d(pool_stride[i],pool_stride[i]))
                  layers.append(nn.Dropout(p=0.2))
      
              self.cnn_layers = nn.Sequential(*layers)
              
              print(self.depth*self.out*self.out)
              
              # Now for our fully connected layers
              layers2 = []
              layers2.append(nn.Dropout(p=0.2))
              layers2.append(nn.Linear(self.depth*self.out*self.out, 512))
              layers2.append(nn.Dropout(p=0.2))
              layers2.append(nn.Linear(512, 256))
              layers2.append(nn.Dropout(p=0.2))
              layers2.append(nn.Linear(256, 256))
              layers2.append(nn.Dropout(p=0.2))
              layers2.append(nn.Linear(256, 10))
      
              self.fc_layers = nn.Sequential(*layers2)
              
              self.fc_last = nn.Linear(self.depth*self.out*self.out, 10)
      
          def forward(self, x):
              x = self.cnn_layers(x)
              x = x.view(-1, self.depth*self.out*self.out)
              x = self.fc_layers(x)
      #        x = self.fc_last(x)
              
              return x
          
      # create a complete CNN
      model = Net()
      model
      
    
    

    模型训练

    • 定义优化器,这里采用Adam。
      import torch.optim as optim
      
      # specify loss function
      criterion = nn.CrossEntropyLoss()
      
      # specify optimizer
      optimizer = optim.Adam(model.parameters(), lr=0.0005)
      
    
    
    • 采用交叉验证法,即从训练集中划分一定比例的验证集作为评价标准,防止过拟合。
      # number of epochs to train the model
      n_epochs = 25 # you may increase this number to train a final model
      
      valid_loss_min = np.Inf # track change in validation loss
      
      # Additional rotation transformation
      #rand_rotate = transforms.Compose([
      #    transforms.ToPILImage(),
      #    transforms.RandomRotation(20),
      #    transforms.ToTensor()
      #])
      
      # Get the device
      print(device)
      model.to(device)
      tLoss, vLoss = [], []
      for epoch in range(n_epochs):
      
          # keep track of training and validation loss
          train_loss = 0.0
          valid_loss = 0.0
          
          #########
          # train #
          #########
          model.train()
          for data, target in train_loader:
              # move tensors to GPU if CUDA is available
              data   = data.to(device)
              target = target.to(device)
              
              # clear the gradients of all optimized variables
              optimizer.zero_grad()
              # forward pass: compute predicted outputs by passing inputs to the model
              output = model(data)
              # calculate the batch loss
              loss = criterion(output, target)
              # backward pass: compute gradient of the loss with respect to model parameters
              loss.backward()
              # perform a single optimization step (parameter update)
              optimizer.step()
              # update training loss
              train_loss += loss.item()*data.size(0)
              
          ############
          # validate #
          ############
          model.eval()
          for data, target in valid_loader:
              # move tensors to GPU if CUDA is available
              data   = data.to(device)
              target = target.to(device)
              # forward pass: compute predicted outputs by passing inputs to the model
              output = model(data)
              # calculate the batch loss
              loss = criterion(output, target)
              # update average validation loss 
              valid_loss += loss.item()*data.size(0)
          
          # calculate average losses
          train_loss = train_loss/len(train_loader.dataset)
          valid_loss = valid_loss/len(valid_loader.dataset)
          tLoss.append(train_loss)
          vLoss.append(valid_loss)
              
          # print training/validation statistics 
          print('Epoch: {} 	Training Loss: {:.6f} 	Validation Loss: {:.6f}'.format(
              epoch, train_loss, valid_loss))
          
          # save model if validation loss has decreased
          if valid_loss <= valid_loss_min:
              print('Validation loss decreased ({:.6f} --> {:.6f}).  Saving model ...'.format(
              valid_loss_min,
              valid_loss))
              torch.save(model.state_dict(), 'model_cifar.pt')
              valid_loss_min = valid_loss
      
    
    
    • 绘制Loss曲线
      # Plot the resulting loss over time
      plt.plot(tLoss, label='Training Loss')
      plt.plot(vLoss, label='Validation Loss')
      plt.legend();
      
    
    

    img

    训练结果

    • 这里只展示模型在验证集上的结果,采用混淆矩阵表示(Confusion Matrix)。

    • 该矩阵中((i,j))表示原本为(i)的样本被判定为(j)的数目。理想情况不存在误判,只有对角线上有值,其他部分为0。但我们的结果显示多多少少存在一些误判,比如((9,4))表示原本为9的样本被误判为了4,这可以理解,因为4和9确实很相近。

      img

    测试结果

    • 加载训练权重
      model.load_state_dict(torch.load('model_cifar.pt'));
      
    
    
    • 加载测试集
      # Define the test data loader
      test        = pd.read_csv("../input/digit-recognizer/test.csv")
      test_X      = get_digits(test)
      test_loader = torch.utils.data.DataLoader(test_X, batch_size=batch_size, 
                                                num_workers=num_workers)
      
    
    
    • 预测并保存结果
      # Create storage objects
      ImageId, Label = [],[]
      
      # Loop through the data and get the predictions
      for data in test_loader:
          # Move tensors to GPU if CUDA is available
          data = data.to(device)
          # Make the predictions
          output = model(data)
          # Get the most likely predicted digit
          _, pred = torch.max(output, 1)
          
          for i in range(len(pred)):        
              ImageId.append(len(ImageId)+1)
              Label.append(pred[i].cpu().numpy())
      
      sub = pd.DataFrame(data={'ImageId':ImageId, 'Label':Label})
      sub.describe
      
      # Write to csv file ignoring index column
      sub.to_csv("submission.csv", index=False)
      
    
    
    • 最终的结果是98.90%,比KNN要高接近两个点,而我将网络模型中的fc_layers替换成一层普通的全连接层后,结果变成了99.21%。

    降维Dimensionality Reduction

    • 在高维数据下,算法的性能可能会变得很差,即维度灾难。因此我们使用降维方法将数据从高维投影到低维,这样学习算法将会简单很多。

    主成干分析PCA

    • PCA是一类线性变换,将原始特征投射到子空间并且尽可能保留信息。因此算法尝试寻找最合适的方向和角度(即主成分)来最大化子空间的方差。

    • 算法

      1579547059275

    • 实现

      # Standardize the data
      from sklearn.preprocessing import StandardScaler
      X = train.values
      X_std = StandardScaler().fit_transform(X)
      
      # Calculating Eigenvectors and eigenvalues of Cov matirx
      mean_vec = np.mean(X_std, axis=0)
      cov_mat = np.cov(X_std.T)
      eig_vals, eig_vecs = np.linalg.eig(cov_mat)
      # Create a list of (eigenvalue, eigenvector) tuples
      eig_pairs = [ (np.abs(eig_vals[i]),eig_vecs[:,i]) for i in range(len(eig_vals))]
      
      # Sort the eigenvalue, eigenvector pair from high to low
      eig_pairs.sort(key = lambda x: x[0], reverse= True)
      
      # Calculation of Explained Variance from the eigenvalues
      tot = sum(eig_vals)
      var_exp = [(i/tot)*100 for i in sorted(eig_vals, reverse=True)] # Individual explained variance
      cum_var_exp = np.cumsum(var_exp) # Cumulative explained variance
      
      
      
    • 可视化

      • 单独的方差(黑色)随着维度增大而减小,累计方差随着维度的增大而饱和。90%的方差可用前200个维度来表示。

      1579547793352

      • 可视化PCA找到的前30个最大方差方向上的特征值。

        # Invoke SKlearn's PCA method
        n_components = 30
        pca = PCA(n_components=n_components).fit(train.values)
        
        eigenvalues = pca.components_.reshape(n_components, 28, 28)
        
        # Extracting the PCA components ( eignevalues )
        #eigenvalues = pca.components_.reshape(n_components, 28, 28)
        eigenvalues = pca.components_
        
        n_row = 4
        n_col = 7
        
        # Plot the first 8 eignenvalues
        plt.figure(figsize=(13,12))
        for i in list(range(n_row * n_col)):
            offset =0
            plt.subplot(n_row, n_col, i + 1)
            plt.imshow(eigenvalues[i].reshape(28,28), cmap='jet')
            title_text = 'Eigenvalue ' + str(i + 1)
            plt.title(title_text, size=6.5)
            plt.xticks(())
            plt.yticks(())
        plt.show()
        
        
        

        1579550937582

      • 用5个特征做PCA并可视化前2个特征(代码略),数据点被分为几个集群,每个集群就是一类数字。

        1579550961157

      • 由于PCA是无监督方法,这里也没有提供标签,于是我们接着采用K-means聚类算法并可视化。

        from sklearn.cluster import KMeans # KMeans clustering 
        # Set a KMeans clustering with 9 components ( 9 chosen sneakily ;) as hopefully we get back our 9 class labels)
        kmeans = KMeans(n_clusters=9)
        # Compute cluster centers and predict cluster indices
        X_clustered = kmeans.fit_predict(X_5d)
        
        
        

        1579550981043

    线性判别分析LDA

    参考https://www.cnblogs.com/pinard/p/6244265.html

    • LDA跟PCA一样,也采用线性降维,但其是监督的。

    • 算法过程如下

      1579549474759

    • 实现、可视化

      lda = LDA(n_components=5)
      # Taking in as second argument the Target as labels
      X_LDA_2D = lda.fit_transform(X_std, Target.values )
      
      
      

      1579551003686

    • LDA vs PCA

      1579549644991

    t-SNE(t-Distributed Stochastic Neighbour Embedding)

    • 不同于PCA、LDA,t-SNE是非线性、基于概率的降维方法。
    • 算法不同于寻找最大信息分离的方向,t-SNE将欧氏距离转化为条件概率,然后对概率应用t分布。概率应用衡量数据点之间的相似性。
    • 实现、可视化
      # Invoking the t-SNE method
      tsne = TSNE(n_components=2)
      tsne_results = tsne.fit_transform(X_std)
      
    
    

    1579551509266

    • 相比PCA、LDA,数据点被更直观的分离,t-SNE更好地保留了数据的拓扑信息,但t-SNE的缺点是识别集群会出现多个局部极小点,可见颜色相同的集群被分为两个子群。

    参考

  • 相关阅读:
    利用带关联子查询Update语句更新数据
    Marriage for Love
    Process Multiple Items respectively by commas!
    How to refresh current Form when thorugh X++ code influence
    Java SPI 机制分析
    浅谈微服务落地实践
    分布式事务之最大努力通知
    分布式事务之三阶段提交
    分布式事务之事务概念剖析
    SQL之树形查询结构设计
  • 原文地址:https://www.cnblogs.com/vincent1997/p/12221785.html
Copyright © 2011-2022 走看看