zoukankan      html  css  js  c++  java
  • 【刷题-LeetCode】222. Count Complete Tree Nodes

    1. Count Complete Tree Nodes

    Given a complete binary tree, count the number of nodes.

    Note:

    Definition of a complete binary tree from Wikipedia:
    In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

    Example:

    Input: 
        1
       / 
      2   3
     /   /
    4  5 6
    
    Output: 6
    

    解法1 一般的计算节点数目方法,count(root) = 1 + count(root->left) + count(root->left)

    class Solution {
    public:
        int countNodes(TreeNode* root) {
            if(root == NULL)return 0;
            return 1 + countNodes(root->left) + countNodes(root->right);
        }
    }
    

    解法2 先序/中序/后序遍历一次

    class Solution {
    public:
        int countNodes(TreeNode* root) {
            int ans = 0;
            pre(root, ans);
            return ans;
        }
        void pre(TreeNode *root, int &ans){
            if(root == NULL)return;
            ans++;
            pre(root->left, ans);
            pre(root->right, ans);
        }
    };
    

    解法3 考虑到完全二叉树的特点:对于每一个节点来说,总有一边是满二叉树,高度为(d)满二叉树共有(2^d-1)个节点

    class Solution {
    public:
        int countNodes(TreeNode* root) {
            int l_h = get_left_h(root);
            int r_h = get_right_h(root);
            if(l_h == r_h)return pow(2, l_h) - 1;
            return 1 + countNodes(root->left) + countNodes(root->right);
        }
        int get_left_h(TreeNode *root){
            int d = 0;
            while(root){
                d++;
                root = root->left;
            }
            return d;
        }
        int get_right_h(TreeNode *root){
            int d = 0;
            while(root){
                d++;
                root = root->right;
            }
            return d;
        }
    };
    

    解法4 考虑完全二叉树的特点:只有最后一层是不满的,采用二分查找确定是从哪里分割的,即寻找第一个没有出现在叶子节点中的节点编号

    • 如何判断一个叶子节点是否存在

      将叶子节点编号为([0, 1, ..., 2^d -1]),根节点将叶子节点分成了([0, frac{2^d-1}{2}-1])([frac{2^d-1}{2}, 2^d-1])两部分,查找编号为idx的叶子时:

      • idx <= mid, root = root->left
      • idx > mid, root = root->right

    • 如何查找第一个不存在的叶子结点的编号

      假设第一个不存在的叶子结点在区间([l, r])中,判断中点(mid = (l + r) / 2)

      • exist(mid) == true :中点及左侧区间被排除
      • exist(mid) == false : 右侧区间被排除
    class Solution {
    public:
        int countNodes(TreeNode* root) {
            int l_h = get_left_h(root);
            int r_h = get_right_h(root);
            if(l_h == r_h)return pow(2, r_h) - 1;
            int l = 0, r = pow(2, r_h) - 1;
            while(l < r){
                int mid = (l + r) / 2;
                if(exist(mid, r_h, root)){
                    l = mid + 1;
                }else{
                    r = mid;
                }
            }
            return pow(2, r_h) + l-1;
        }
        bool exist(int val, int d, TreeNode *root){
            int l = 0, r = pow(2, d)-1;
            TreeNode *cur = root;
            for(int i = 0; i < d; ++i){
                int mid = (l + r) / 2;
                if(val <= mid){
                    r = mid;
                    cur = cur->left;
                }else{
                    l = mid + 1;
                    cur = cur->right;
                }
            }
            return cur != NULL;
        }
        int get_left_h(TreeNode *root){
            int d = 0;
            while(root){
                d++;
                root = root->left;
            }
            return d;
        }
        int get_right_h(TreeNode *root){
            int d = 0;
            while(root){
                d++;
                root = root->right;
            }
            return d;
        }
    };
    
    作者:Vinson

    -------------------------------------------

    个性签名:只要想起一生中后悔的事,梅花便落满了南山

    如果觉得这篇文章对你有小小的帮助的话,记得在右下角点个“推荐”哦,博主在此感谢!

  • 相关阅读:
    linux mint安装成功
    js 兼容性
    程序员的肚子有多大,水平就有多高
    财富通直连接口for rails3
    ubuntu live cd版本是没有recuse broken system功能
    生活百科
    省市县导入mysql代码,通过csv
    省市县导入mysql代码,通过csv
    休眠、挂起、待机三者之间的区别 收藏
    支付宝接口for rails3
  • 原文地址:https://www.cnblogs.com/vinnson/p/13344811.html
Copyright © 2011-2022 走看看