zoukankan      html  css  js  c++  java
  • Repeating Decimals UVA

     1 The decimal expansion of the fraction 1/33 is 0.03, where the 03 is used to indicate that the cycle 03
     2 repeats indefinitely with no intervening digits. In fact, the decimal expansion of every rational number
     3 (fraction) has a repeating cycle as opposed to decimal expansions of irrational numbers, which have no
     4 such repeating cycles.
     5 Examples of decimal expansions of rational numbers and their repeating cycles are shown below.
     6 Here, we use parentheses to enclose the repeating cycle rather than place a bar over the cycle.
     7 fraction decimal expansion repeating cycle cycle length
     8 1/6 0.1(6) 6 1
     9 5/7 0.(714285) 714285 6
    10 1/250 0.004(0) 0 1
    11 300/31 9.(677419354838709) 677419354838709 15
    12 655/990 0.6(61) 61 2
    13 Write a program that reads numerators and denominators of fractions and determines their repeating
    14 cycles.
    15 For the purposes of this problem, define a repeating cycle of a fraction to be the first minimal length
    16 string of digits to the right of the decimal that repeats indefinitely with no intervening digits. Thus
    17 for example, the repeating cycle of the fraction 1/250 is 0, which begins at position 4 (as opposed to 0
    18 which begins at positions 1 or 2 and as opposed to 00 which begins at positions 1 or 4).
    19 Input
    20 Each line of the input file consists of an integer numerator, which is nonnegative, followed by an integer
    21 denominator, which is positive. None of the input integers exceeds 3000. End-of-file indicates the end
    22 of input.
    23 Output
    24 For each line of input, print the fraction, its decimal expansion through the first occurrence of the cycle
    25 to the right of the decimal or 50 decimal places (whichever comes first), and the length of the entire
    26 repeating cycle.
    27 In writing the decimal expansion, enclose the repeating cycle in parentheses when possible. If the
    28 entire repeating cycle does not occur within the first 50 places, place a left parenthesis where the cycle
    29 begins — it will begin within the first 50 places — and place ‘...)’ after the 50th digit.
    30 Sample Input
    31 76 25
    32 5 43
    33 1 397
    34 Sample Output
    35 76/25 = 3.04(0)
    36 1 = number of digits in repeating cycle
    37 5/43 = 0.(116279069767441860465)
    38 21 = number of digits in repeating cycle
    39 1/397 = 0.(00251889168765743073047858942065491183879093198992...)
    40 99 = number of digits in repeating cycle
    题目

    题目大意:输入,a,b(保证a/b是循环小数),问:从那一段开始循环,非循环部分直接输出,循环部分用括号括起来,但是如果循环部分未在小数点后50位内全部打出,在第50位后输出"...)"

    分析:首先我们要先解决拿取小数部分的问题(毕竟如果直接a/b的小数部分会有精度损失),而a%b*10/b(如1/10,1%10*10/10),用这种方法恰好解决了这个问题,接着就是如何判断循环的问题,我个人的想法是看a%b的余数,如果余数相同,该从这位后都以前一部分循环。

    PS:注意输出格式,第二行开头要空3格,每个例子间空一行。

    #define debug
    #include<stdio.h>
    #include<math.h>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<string>
    #include<cstring>
    #include<string.h>
    #include<algorithm>
    #include<iostream>
    #include<vector>
    #include<functional>
    #include<iomanip>
    #include<map>
    #include<set>
    #define f first
    #define s second
    #define pb push_back
    #define dbg(x) cout<<#x<<" = "<<(x)<<endl;
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    typedef pair<ll,ll>PLL;
    typedef pair<int,ll>Pil;
    const ll INF = 0x3f3f3f3f;
    const double inf=1e8+100;
    const double eps=1e-8;
    const int maxn =1e4+100;
    const int N = 1e3+10;
    const ll mod=1e9+7;
    //------
    //define
    int arr[maxn];
    map<int,int>mp;
    //solve
    void solve() {
    	int a,b;
    	while(cin>>a>>b) {
    		memset(arr,0,sizeof(arr));
    		mp.clear();
    		cout<<a<<"/"<<b<<" = "<<a/b<<".";
    		a%=b;
    		int ze=0;
    		int r,l;
    		mp[a]=0;
    		for(int i=1;i<3001;i++){
    			a*=10;
    			arr[i]=a/b;
    			if(mp.count(a%b)){
    				l=mp[a%b];
    				r=i;
    				break;
    			}else{
    				mp[a%b]=i;
    			}
    			a%=b;
    		}
    		int tl=l+1,tr=r;//第l+1才是循环的头 
    		for(int i=1;i<=50&&i<=tr;i++){
    			if(i==tl)cout<<"(";
    			cout<<arr[i];
    		}
    		if(r<=50)
    		cout<<")"<<endl<<"   "<<r-l;
    		else{
    			cout<<"...)"<<endl<<"   "<<r-l;
    		}	
    		cout<<" = number of digits in repeating cycle"<<endl<<endl;  
    	}
    }
    //main
    int main() {
    	ios_base::sync_with_stdio(false);
    #ifdef debug
    	freopen("in.txt", "r", stdin);
    //	freopen("out.txt","w",stdout);
    #endif
    	cin.tie(0);
    	cout.tie(0);
    	solve();
    	/*
    		#ifdef debug
    			fclose(stdin);
    			fclose(stdout);
    			system("out.txt");
    		#endif
    	*/
    	return 0;
    }
    

      

  • 相关阅读:
    Eureka获取服务列表源码解析
    Eureka客户端续约及服务端过期租约清理源码解析
    Eureka应用注册与集群数据同步源码解析
    Eureka重要对象简介
    EurekaClient自动装配及启动流程解析
    idea2019注册码
    EurekaServer自动装配及启动流程解析
    程序员的算法课(5)-动态规划算法
    程序员的算法课(4)-二分查找
    程序员的算法课(3)-递归(recursion)算法
  • 原文地址:https://www.cnblogs.com/visualVK/p/8675094.html
Copyright © 2011-2022 走看看