zoukankan      html  css  js  c++  java
  • 机器学习:scikit-learn中算法的调用、封装并使用自己所写的算法

    一、scikit-learn库中的kNN算法

    • scikit-learn库中,所有机器学习算法都是以面向对象的形式进行包装的;
    • 所有scikit-learn库中机器学习算法的使用过程:调用、实例化、fit、预测;

     1)使用scikit-learn库中的kNN算法解决分来问题:

    • 代码实现过程:
      import numpy as np
      import matplotlib.pyplot as plt
      
      raw_data_x = [[3.3935, 2.3312],
                    [3.1101, 1.7815],
                    [1.3438, 3.3684],
                    [3.5823, 4.6792],
                    [2.2804, 2.8670],
                    [7.4234, 4.6965],
                    [5.7451, 3.5340],
                    [9.1722, 2.5111],
                    [7.7928, 3.4241],
                    [7.9398, 0.7916]]
      raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
      
      X_train = np.array(raw_data_x)
      y_train = np.array(raw_data_y)
      x = np.array([8.0936, 3.3657]).reshape(1, -1)
      
      # 1)调用
      # 从KNeighborsClassifier类中调用kNN算法
      from sklearn.neighbors import KNeighborsClassifier
      
      # 2)实例化
      # 创建一个KNeighborsClassifier相应的实例
      # n_neighbors为kNN中的k值
      KNN_classifier = KNeighborsClassifier(n_neighbors = 6)
      
      # 3)fit过程
      # 对实例对象做拟合过程,返回机器学习对象自身,也就是训练的模型
      # 对scikit-learn库中每一个机器学习算法的使用,都要先进行拟合
      # fit的过程,传入训练数据集(特征值X_train、样本标签向量y_train)
      KNN_classifier.fit(X_train, y_train)
      
      # 4)预测
      # 使用模型进行预测,返回一个array,array中的每一个数据表示预测对象的输出结果
      # 预测的对象必须是一个矩阵,一个矩阵中包含多个新样本
      KNN_classifier.predict(x)
    • 代码实现过程中的主义事项:
    1. 对scikit-learn库中每一个机器学习算法的使用,都要先进行拟合;
    2. 拟合的过程,传入训练数据集(特征值X_train、样本标签向量y_train);
    3. 预测的对象必须是一个矩阵,一个矩阵中包含多个新样本;

     

    二、将自己所写的kNN算法封装成scikit-learn库中的kNN算法一样的模式

    • 封装算法:
      import numpy as np
      from math import sqrt
      from collections import Counter
      
      class KNNClassifier:
      
          def __int__(self, k):
              """初始化kNN分类器"""
              assert k >= 1, "k must be walid"
              self.k = k
              """变量前加_,表示该变量为类私有,其它类不能随便操作"""
              self._X_train = None
              self._y_train = None
      
          def fit(self, X_train, y_train):
              """根据训练集X_train和y_train训练kNN分类器"""
              assert X_train.shape[0] == y_train.shape[0], 
                  "the size of X_train must be equal to the size of y_train"
              assert self.k <= X_train.shape[0], 
                  "the size of X_train must be at least k."
      
              self._X_train = X_train
              self._y_train = y_train
              """
              为了和scikit-learn库的规则一样,此处一般返回模型本身,
              可使封装好的算法与scikit-learn中其它方法更好结合
              """
              return self
      
          def predict(self, X_predict):
              """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
              assert self._X_train is not None and self._y_train is not None, 
                  "must fit before predict!"
              assert X_predict.shape[1] == self._X_train.shape[1], 
                  "the feature number of X_predict must be equal to X_train"
      
              y_predict = [self._predict(x) for x in X_predict]
              return np.array(y_predict)
      
          def _predict(self, x):
              """给定单个待预测数据,返回x的预测结果"""
              assert x.shape[0] == self._X_train.shape[1], 
                  "the feature number of x must be equal to X_train"
      
              distances = [sqrt(np.sum((x - x_train) ** 2)) for x_train in self._X_train]
              nearest = np.argsort(distances)
              topK_y = [self._y_train[i] for i in nearest[:self.k]]
              votes = Counter(topK_y)
              return votes.most_common(1)[0][0]
      
          def __repr__(self):
              """kNN算法的显示名称"""
              return "KNN(k = %d)" % self.k
    • 测试算法:调用、实例化、fit、预测;(操作过程与scikit-learn中的算法应用一样)
      import numpy as np
      import matplotlib.pyplot as plt
      
      raw_data_x = [[3.3935, 2.3312],
                    [3.1101, 1.7815],
                    [1.3438, 3.3684],
                    [3.5823, 4.6792],
                    [2.2804, 2.8670],
                    [7.4234, 4.6965],
                    [5.7451, 3.5340],
                    [9.1722, 2.5111],
                    [7.7928, 3.4241],
                    [7.9398, 0.7916]]
      raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
      
      X_train = np.array(raw_data_x)
      y_train = np.array(raw_data_y)
      x = np.array([8.0936, 3.3657]).reshape(1, -1)
      
      # 1)导入kNN.py模块
      %run kNN.py
      
      # 2)初始化
      knn_clf = KNNClassifier(k=6)
      
      # 3)fit
      knn_clf.fit(X_train, y_train)
      
      # 4)预测
      y_predict = knn_clf.predict(X_predict)
      print(y_predict)
    • scikit-learn库内部的底层实现更加复杂,因为kNN算法在预测的过程中非常耗时(也是kNN算法的缺点);
    • 字Jupyter NoteBook中运行py文件:%run + dir_path,如%run E:/pythonwj/ALG/matries.py
  • 相关阅读:
    fiddler 增加请求时间显示
    es 多字段分词查询优化
    【二分】【预处理】zoj4029 Now Loading!!!
    【数论】【扩展欧几里得】Codeforces Round #484 (Div. 2) E. Billiard
    【set】【multiset】Codeforces Round #484 (Div. 2) D. Shark
    【推导】Codeforces Round #484 (Div. 2) C. Cut 'em all!
    【递推】Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!] D. XOR-pyramid
    【数论】Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!] C. Finite or not?
    【Trie】【枚举约数】Codeforces Round #482 (Div. 2) D. Kuro and GCD and XOR and SUM
    【枚举】【贪心】Codeforces Round #482 (Div. 2) B. Treasure Hunt
  • 原文地址:https://www.cnblogs.com/volcao/p/9075450.html
Copyright © 2011-2022 走看看