我发现已经无力吐嘈这几次的比赛了。。。这次蹭数据的少了许多,不过出题报告讲的那叫一个玄而又玄,完全没理解他要表达什么
1001
数论题,当时根本就没想到,也不知道怎么证明。。。题解说A的所有质因子包含在B里边,原因是每一个某进制数都可以写成x = p1^k1 * p2^k2 * p3^k3.... (pi为素数)。所以当B包含A的所有质因子时,A进制数一定能被B进制表示。
关于怎么判断A的质因子在B里边。打一个sqrt(A)大小的素数表。A不断除掉小于等于sqrt(A)的质因子,并且判断这个质因子是否能被B整除。最后如果A剩下>sqrt(A)的质因子,同样判断这个数是否被B整除。(不可能出现>sqrt(A)的质因子个数多于1的情况。。。)
typedef long long LL; const int eps = 1e-8; const int inf = ~0u>>2; using namespace std; const int N = 1000000; int prime[1000000]; bool vis[1000010]; int cnt, ans; void init() { int i; LL j; CL(vis, true); for(i = 2; i <= N; ++i) { for(j = LL(i)*LL(i); j <= N; j += i) vis[j] = false; } cnt = 0; for(i = 2; i <= N; ++i) if(vis[i]) prime[cnt++] = i; } bool solve(LL A, LL B) { for(int i = 0; i < cnt; ++i) { if(A%prime[i] == 0) { if(B%prime[i] != 0) return false; while(A%prime[i] == 0) A /= prime[i]; } if(prime[i] > A) break; } if(A > 1) return B%A == 0; return true; } int main() { //freopen("data.in", "r", stdin); int t, cas = 0; LL A, B; init(); scanf("%d", &t); while(t--) { cin >> A >> B; printf("Case #%d: ", ++cas); if(solve(A, B)) puts("YES"); else puts("NO"); } return 0; }
1003
这是我对题解最想吐嘈的题。。。你妹!c和k分不清楚吗?!到底是bi还是bj不知道吗!!!
吐嘈完毕-_-!
确实是个好题,把欢乐值当成费用,糖果个数当成流。
以下为转载内容:http://blog.csdn.net/cyberzhg/article/details/7815790
当快乐的程度超过b[i]时,多出来的部分就浪费了,为了使浪费尽可能少,我们用费用流加以控制,当获得最大费用最大流的时候,这是的费用的利用率就是最高的。
在建图时只需考虑特殊的糖就可以了,建图方法:
原点到每个糖:流为1,费用为0
如果糖对某个人有特殊效果,连边:流为1,费用为0
人向汇点连边:
最终快乐的程度不超过b[i]的情况:流为b[i]/k,限制这样的糖的数量,费用为k,因为特殊效果全部利用上了。
快乐程度超过b[i]的情况:流为1,限制流量不超过b[i],费用为b[i] % k,因为多出来的快乐无效。当b[i] % k == 0时,这样的边没有必要。当b[i] % k == 1时,这时的糖和普通的糖无异,没必要连边。
ps:做这道题才发现以前的费用流模板是那么的水。。。Orz cyberzhg大神
#include <iostream> #include <cstdio> #include <cmath> #include <vector> #include <cstring> #include <algorithm> #include <string> #include <set> #include <ctime> #include <queue> #include <map> #include <sstream> #define CL(arr, val) memset(arr, val, sizeof(arr)) #define REP(i, n) for((i) = 0; (i) < (n); ++(i)) #define FOR(i, l, h) for((i) = (l); (i) <= (h); ++(i)) #define FORD(i, h, l) for((i) = (h); (i) >= (l); --(i)) #define L(x) (x) << 1 #define R(x) (x) << 1 | 1 #define MID(l, r) (l + r) >> 1 #define Min(x, y) x < y ? x : y #define Max(x, y) x < y ? y : x #define E(x) (1 << (x)) #define iabs(x) ((x) > 0 ? (x) : -(x)) typedef long long LL; const int eps = 1e-8; const int inf = ~0u>>2; using namespace std; const int N = 110; const int M = N*N*2; int n, m, k; int b[N], sumb; int c[N][N]; int S, T; struct node { int from, to, cost, flow, next; // } g[M]; int head[N], t; void init() { CL(head, -1); t = 0; } void add(int u, int v, int f, int w) { g[t].from = u; g[t].to = v; g[t].cost = w; g[t].flow = f; g[t].next = head[u]; head[u] = t++; g[t].from = v; g[t].to = u; g[t].cost = -w; g[t].flow = 0; g[t].next = head[v]; head[v] = t++; } void build() { init(); int i, j; S = 0; T = m + n + 1; for(i = 1; i <= n; ++i) { add(S, i, 1, 0); //flow, cost; } for(i = 1; i<= m; ++i) { for(j = 1; j <= n; ++j) { if(c[i][j]) add(j, i + n, 1, 0); } } for(j = 1; j <= m; ++j) { add(j+n, T, b[j]/k, k); if(b[j]%k > 1) { add(j + n, T, 1, b[j]%k); } } } int dis[N]; int pre[N]; bool vis[N]; queue<int> q; bool spfa() { while(!q.empty()) q.pop(); CL(vis, 0); CL(dis, -1); CL(pre, -1); q.push(S); dis[S] = 0; vis[S] = true; pre[S] = -1; int u, v, w, i; while(!q.empty()) { u = q.front(); q.pop(); for(i = head[u]; i != -1; i = g[i].next) { v = g[i].to; w = g[i].cost; if(g[i].flow && dis[v] < dis[u] + w) { dis[v] = dis[u] + w; pre[v] = i; if(!vis[v]) { vis[v] = true; q.push(v); } } } vis[u] = false; } return dis[T] != -1; } int get_flow() { int tmp = T; int res = inf; while(pre[tmp] != -1) { res = min(res, g[pre[tmp]].flow); tmp = g[pre[tmp]].from; } tmp = T; while(pre[tmp] != -1) { g[pre[tmp]].flow -= res; g[pre[tmp]^1].flow += res; tmp = g[pre[tmp]].from; } return res; } bool solve() { int Cost = 0, Flow = 0; while(spfa()) { Cost += dis[T]; Flow += get_flow(); } //printf("%d %d\n", Cost, Flow); //return Cost + n - Flow >= sumb; } int main() { //freopen("data.in", "r", stdin); int t, i, j, cas = 0; scanf("%d", &t); while(t--) { CL(c, 0); CL(b, 0); sumb = 0; scanf("%d%d%d", &n, &m, &k); for(i = 1; i <= m; ++i) {scanf("%d", b + i); sumb += b[i];} for(i = 1; i <= m; ++i) { for(j = 1; j <= n; ++j) scanf("%d", &c[i][j]); } printf("Case #%d: ", ++cas); build(); if(solve()) puts("YES"); else puts("NO"); } return 0; }
1004
对字符串添加,删除,更改。。。很明显的dp。。。数据不强,不用BK-Tree优化就可以过。。。
暴力+dp
int dif[20][20]; char dic[1600][20]; char tmp[20]; int len[1600]; int n, m; int solve(char* str1,char* str2, int x, int y) { int len1 = x; int len2 = y; CL(dif, 0); for (int a = 0; a <= len1; a++) { dif[a][0] = a; } for (int a = 0; a <= len2; a++) { dif[0][a] = a; } int temp; for (int i = 1; i <= len1; i++) { for (int j = 1; j <= len2; j++) { if (str1[i - 1] == str2[j - 1]) { temp = 0; } else { temp = 1; } dif[i][j] = min(dif[i - 1][j - 1] + temp, min(dif[i][j - 1] + 1, dif[i - 1][j] + 1)); } } return dif[len1][len2]; } int main() { //freopen("data.in", "r", stdin); int t, i, y, l, cnt, cas = 0; scanf("%d", &t); while(t--) { scanf("%d%d", &n, &m); CL(dic, 0); CL(len, 0); for(i = 0; i < n; ++i) { scanf("%s", dic[i]); len[i] = strlen(dic[i]); } printf("Case #%d:\n", ++cas); while(m--) { scanf("%s%d", tmp, &y); cnt = 0; for(i = 0; i < n; ++i) { l = strlen(tmp); if(iabs(l - len[i]) > y) continue; if(solve(dic[i], tmp, len[i], l) <= y) cnt++; } printf("%d\n", cnt); } } return 0; }
1005
思路是找节点数为 3的环。用dfs可以解决
开一个cnt[]记录每个节点的状态
cnt[i] = 0 表示i还未被访问过
cnt[i] = -1 表示跟i相连的所有子节点还没有被访问完,如果在访问它的所有字节点过程中又访问到它自己,说明有环。
cnt[i] = 1 表示跟i相连的所有子节点还被访问完。
用一个pos[]记录每个节点被访问的次序。如果dfs(u)时出现cnt[v] = -1的情况,则判断pos[u] 和pos[v]的距离是否为2.
const int N = 2048; struct node { int to; int next; } g[N*N]; char str[N][N]; int head[N], t; int cnt[N]; int pot[N]; int np; bool flag; void init() { CL(head, -1); t = 0; } void add(int u, int v) { g[t].to = v; g[t].next = head[u]; head[u] = t++; } void dfs(int cur) { cnt[cur] = -1; pot[cur] = np++; int i, v; for(i = head[cur]; i != -1; i = g[i].next) { v = g[i].to; if(cnt[v] == -1 && iabs(pot[cur] - pot[v]) == 2) { flag = true; return ; } else if(cnt[v] == 0) { dfs(v); } } cnt[cur] = 1; } int main() { //freopen("data.in", "r", stdin); int t, i, j, n, cas = 0; scanf("%d", &t); while(t--) { init(); scanf("%d", &n); for(i = 0; i < n; ++i) { scanf("%s", str[i]); for(j = 0; j < n; ++j) { if(str[i][j] == '1') add(i, j); } } CL(cnt, 0); CL(pot, 0); flag = false; np = 0; for(i = 0; i < n; ++i) { if(cnt[i] == 0) dfs(i); if(flag) break; } printf("Case #%d: ", ++cas); if(flag) puts("Yes"); else puts("No"); } return 0; }
1006
很裸的线段树染色问题。。。比赛的时候gbx做的
const int N = 100010; struct node { int l, r; int col; } tree[N<<2]; int num[N*3], cnt; int L[N], R[N], M[N]; int n, m; int find(int x) { int l = 0, r = cnt, mid; while(l <= r) { mid = MID(l, r); if(num[mid] == x) return mid; else if(num[mid] > x) r = mid - 1; else l = mid + 1; } return -1; } void creat(int t, int l, int r) { tree[t].l = l; tree[t].r = r; tree[t].col = 0; if(l == r) return ; int mid = MID(l, r); creat(L(t), l, mid); creat(R(t), mid + 1, r); } void push_down(int t) { if(tree[t].col != 0) { tree[L(t)].col += tree[t].col; tree[R(t)].col += tree[t].col; tree[t].col = 0; } } void updata(int t, int l, int r) { if(tree[t].l >= l && tree[t].r <= r) { tree[t].col ++; return ; } push_down(t); int mid = MID(tree[t].l, tree[t].r); if(l > mid) updata(R(t), l, r); else if(r <= mid) updata(L(t), l, r); else { updata(L(t), l, mid); updata(R(t), mid + 1, r); } } int query(int t, int p) { if(tree[t].l == tree[t].r) { return tree[t].col; } push_down(t); int mid = MID(tree[t].l, tree[t].r); if(p > mid) return query(R(t), p); else return query(L(t), p); } void read() { scanf("%d%d", &n, &m); cnt = 0; for(int i = 0; i < n; ++i) { scanf("%d%d", &L[i], &R[i]); num[cnt++] = L[i]; num[cnt++] = R[i]; } for(int i = 0; i < m; ++i) { scanf("%d", &M[i]); num[cnt++] = M[i]; } sort(num, num + cnt); } int main() { //freopen("data.in", "r", stdin); int t, i, x, y, cas = 0; scanf("%d", &t); while(t--) { read(); creat(1, 0, cnt); for(i = 0; i < n; ++i) { x = find(L[i]); y = find(R[i]); updata(1, x, y); } printf("Case #%d:\n", ++cas); for(i = 0; i < m; ++i) { x = find(M[i]); printf("%d\n", query(1, x)); } } return 0; }
1009
对于红蓝相间的块和单色的块分开讨论,单色块是很经典的最大子矩阵问题的变形,记录一下上界,左右边界,找最大面积。
红蓝相间的块直接dp,f[i][j]表示以i,j为右下角的最大正方形。tmp = min(f[i][j-1] , f[i-1][j]); f[i][j] = max(tmp + mp[i-tmp][j-tmp], 1)
这个过程画画图就很清楚。因为tmp本身取的求实小的,那么>tmp的那一块肯定是红蓝相间的正方形。
const int N = 1010; int dp[N][N]; int mp[N][N]; int H[N], L[N], R[N]; int n, m, ans; char str[N]; void red_or_blue(int x) { //单色 int i, j; for(i = 1; i <= m; ++i) { H[i] = 0; L[i] = 1; R[i] = m; } int lm, rm; for(i = 1; i <= n; ++i) { lm = 1, rm = m; for(j = 1; j <= m; ++j) { if(mp[i][j] == x) { H[j]++; if(L[j] < lm) L[j] = lm; } else { H[j] = 0; lm = j + 1; L[j] = 1; R[j] = m; } } for(j = m; j >= 1; --j) { if(H[j]) { if(R[j] > rm) R[j] = rm; ans = max(ans, (H[j] + R[j] - L[j] + 1)*2); } else { rm = j - 1; } } } } void red_and_blue() { //相间色 int i, j, x; for(i = 1; i <= n; ++i) dp[i][1] = 1; for(j = 1; j <= m; ++j) dp[1][j] = 1; for(i = 2; i <= n; ++i) { for(j = 2; j <= m; ++j) { dp[i][j] = 1; if(mp[i][j] == mp[i][j-1] || mp[i][j] == mp[i-1][j] || mp[i][j] != mp[i-1][j-1]) { continue; } x = min(dp[i-1][j], dp[i][j-1]); if(mp[i][j] == mp[i-x][j-x]) ++x; dp[i][j] = max(dp[i][j], x); ans = max(ans, dp[i][j]); } } ans <<= 2; } int main() { //freopen("data.in", "r", stdin); int t, i, j, cas = 0; scanf("%d", &t); while(t--) { scanf("%d%d", &n, &m); CL(mp, 0); for(i = 1; i <= n; ++i) { scanf("%s", str + 1); for(j = 1; j <= m; ++j) { mp[i][j] = (str[j] == 'R'); } } ans = 1; red_and_blue(); red_or_blue(0); red_or_blue(1); printf("Case #%d: %d\n", ++cas, ans); } return 0; }
1010
神题意
题意说明白了相信都会做
P(r)怎么求,
比如给出原字典串
(1)Apple iphone.com ipad.com
又给出搜索得到的串
(2)Apple gdfgd.com iphone.com ipad.com
P(i)表示:(2)串中,前i个串里边有j个串在字典串中包含,那么P(i) = 1.0*j / i;
AveP = sum(P[i])/num num表示(2)中有多少个串。
ans = sum(AveP)/n;
const int N = 10010; char dic[110][N]; char res[110][N]; string s; double getAveP(char* a, char* b) { map<string, int> mp; istringstream dic(a); istringstream res(b); int num = 0, cnt = 0, l = 0; double ret = .0; dic >> s; while(dic >> s) mp[s] = 1, num++; res >> s; while(res >> s) { cnt++; if(mp[s] == 1) { l++; ret += double(l)/cnt; } } return ret/num; } int main() { //freopen("data.in", "r", stdin); int t, n, i, cas = 0; scanf("%d", &t); while(t--) { scanf("%d\n", &n); for(i = 0; i < n; ++i) cin.getline(dic[i], N); for(i = 0; i < n; ++i) cin.getline(res[i], N); double ans = .0; for(i = 0; i < n; ++i) { ans += getAveP(dic[i], res[i]); } printf("Case #%d: %.6f\n", ++cas, ans/n); } return 0; }