zoukankan      html  css  js  c++  java
  • 编程作业ex3:多元分类与神经网络

    一、多元分类

    1.1 数据集

    本次实现的是手写数字的识别,数据集中有5000个样本,其中每个样本是20*20像素的一张图片,每个像素都用一个点数来表示,该点数表示这个位置的灰度,将20*20的像素网络展开为400维向量,而训练集中的5000*400的矩阵,每一行就代表了一个手写数字图像的灰度值。

    训练集的第二部分是5000维向量y,包含训练集的标签,为了与没有0索引的MATLAB索引兼容,我们将数字零映射到10,因此, 0“数字被标记为 10”,而数字 1“至 9”则按照其自然顺序被标记为 1“至 9”。

    1.2 可视化数据

    可视化数据的代码已经完成,运行可以看到随机从数据集中挑选出来的100个数字

    数据可视化函数:

    function [h, display_array] = displayData(X, example_width)
    %DISPLAYDATA Display 2D data in a nice grid
    %   [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
    %   stored in X in a nice grid. It returns the figure handle h and the 
    %   displayed array if requested.
    
    % Set example_width automatically if not passed in
    if ~exist('example_width', 'var') || isempty(example_width) 
        example_width = round(sqrt(size(X, 2)));
    end
    
    % Gray Image
    colormap(gray);
    
    % Compute rows, cols
    [m n] = size(X);
    example_height = (n / example_width);
    
    % Compute number of items to display
    display_rows = floor(sqrt(m));
    display_cols = ceil(m / display_rows);
    
    % Between images padding
    pad = 1;
    
    % Setup blank display
    display_array = - ones(pad + display_rows * (example_height + pad), ...
                           pad + display_cols * (example_width + pad));
    
    % Copy each example into a patch on the display array
    curr_ex = 1;
    for j = 1:display_rows
        for i = 1:display_cols
            if curr_ex > m, 
                break; 
            end
            % Copy the patch
            
            % Get the max value of the patch
            max_val = max(abs(X(curr_ex, :)));
            display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
                          pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
                            reshape(X(curr_ex, :), example_height, example_width) / max_val;
            curr_ex = curr_ex + 1;
        end
        if curr_ex > m, 
            break; 
        end
    end
    
    % Display Image
    h = imagesc(display_array, [-1 1]);
    
    % Do not show axis
    axis image off
    
    drawnow;
    
    end

    调用显示函数:

    % Load Training Data
    fprintf('Loading and Visualizing Data ...
    ')
    
    load('ex3data1.mat'); % training data stored in arrays X, y
    m = size(X, 1);
    % Randomly select 100 data points to display
    rand_indices = randperm(m);
    sel = X(rand_indices(1:100), :);
    
    displayData(sel);
    
    fprintf('Program paused. Press enter to continue.
    ');
    pause;

    运行结果:

     1.3 向量化logistic回归

    1.3.1 向量化代价函数

    从向量化代价函数开始,logistic回归的代价函数是:,为了求和,我们要计算每个样本i的,而是sigmoid函数。

    我们定义X和θ为:

     然后计算矩阵乘法Xθ,等于

    (注意这里运用了向量运算的法则

    这使得我们计算所有样本的时只要使用一行代码即可。

    1.3.2 向量化梯度

     回顾一下非正则化逻辑回归成本函数的梯度是一个向量,其中第J个元素定义为,我们写出所有的偏导数:

     理解一下上述推导中的最后一步,我们定义,于是可以得到:

     1.3.3 向量化正则化的逻辑回归

    完成logistic回归的向量化后,这时候往代价函数中增加正则化项,之前学过,正则化的logistic回归的代价函数为:

    (注意θ0不需要正则化,因为它是用来控制偏置项的)

    正则化的logistic回归的代价函数偏导数定义为:

     完成lrcostfunction.m中的代码,要使用元素乘法和求和函数sum:

    function [J, grad] = lrCostFunction(theta, X, y, lambda)
    %LRCOSTFUNCTION Compute cost and gradient for logistic regression with 
    %regularization
    %   J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
    %   theta as the parameter for regularized logistic regression and the
    %   gradient of the cost w.r.t. to the parameters. 
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    %
    % Hint: The computation of the cost function and gradients can be
    %       efficiently vectorized. For example, consider the computation
    %
    %           sigmoid(X * theta)
    %
    %       Each row of the resulting matrix will contain the value of the
    %       prediction for that example. You can make use of this to vectorize
    %       the cost function and gradient computations. 
    %
    % Hint: When computing the gradient of the regularized cost function, 
    %       there're many possible vectorized solutions, but one solution
    %       looks like:
    %           grad = (逻辑回归未正则化的梯度)
    %           temp = theta; 
    %           temp(1) = 0;   % because we don't add anything for j = 0  
    %           grad = grad + YOUR_CODE_HERE (使用temp变量)
    
    hy = sigmoid(X*theta);
    J = sum(-y.*log(hy) - (1-y).*log(1-hy))/m;  % 计算未正则化的代价函数
    diff = hy - y;
    grad = X'*diff/m; % 未正则化的梯度
    J = J + sum(theta(2:end).^2)*lambda/(2*m);  % 正则化后的代价函数(theta从第二个开始)
    temp = theta;
    temp(1) = 0;
    grad = grad + temp*(lambda/m);
    
    % =============================================================
    
    grad = grad(:);
    
    end

    运行得到的结果:

    1.4 一对多分类

    训练多个正则逻辑回归分类器实现一对多分类,在给出的手写数字数据集中,类别K=10,而我们编写的代码应该适用于任何K值

    tip:MATLAB中,向量a(m*1)和标量b进行a==b的运算,将会得到一个和a相同size的向量,代码示例如下:

    >> a =1:10
    a =
         1     2     3     4     5     6     7     8     9    10
    >> b=3
    b =
         3
    >> a==b
    ans =
      1×10 logical 数组
       0   0   1   0   0   0   0   0   0   0

    完成oneVSall.m中的代码:

    function [all_theta] = oneVsAll(X, y, num_labels, lambda)
    %ONEVSALL trains multiple logistic regression classifiers and returns all
    %the classifiers in a matrix all_theta, where the i-th row of all_theta 
    %corresponds to the classifier for label i

       % ONEVSALL训练多个逻辑回归分类器,并以矩阵all_theta返回所有分类器,其中all_theta的第i行对应于标签i的分类器

    %   [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
    %   logistic regression classifiers and returns each of these classifiers
    %   in a matrix all_theta, where the i-th row of all_theta corresponds 
    %   to the classifier for label i
    
    % Some useful variables
    m = size(X, 1); % 返回X矩阵的第一个维度(行)数
    n = size(X, 2); % 返回X矩阵的第二个维度(列)数
    
    % You need to return the following variables correctly 
    all_theta = zeros(num_labels, n + 1);
    
    % Add ones to the X data matrix 给X矩阵加上一列1
    X = [ones(m, 1) X];
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: You should complete the following code to train num_labels
    %               logistic regression classifiers with regularization
    %               parameter lambda. 
    %
    % Hint: theta(:) will return a column vector.
    %
    % Hint: You can use y == c to obtain a vector of 1's and 0's that tell you
    %       whether the ground truth is true/false for this class.
    %
    % Note: For this assignment, we recommend using fmincg to optimize the cost
    %       function. It is okay to use a for-loop (for c = 1:num_labels) to
    %       loop over the different classes.
    %
    %       fmincg works similarly to fminunc, but is more efficient when we
    %       are dealing with large number of parameters.
    % 在这里我们使用fmincg函数来优化代价函数,fmincg和fminunc基本相同,但是前者处理大量数据效率更高
    % Example Code for fmincg:
    %
    %     % Set Initial theta
    %     initial_theta = zeros(n + 1, 1);
    %     
    %     % Set options for fminunc
    %     options = optimset('GradObj', 'on', 'MaxIter', 50);
    % 
    %     % Run fmincg to obtain the optimal theta
    %     % This function will return theta and the cost 
    %     [theta] = ...
    %         fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
    %                 initial_theta, options);
    %
    % options = optimset('GradObj', 'on', 'MaxIter', 50);
    % 
    % for c = 1:num_labels
    % initial_theta = zeros(n+1, 1);
    % all_theta(c,:) = fmincg(@(t)(lrCostFunction(t, X, (y==c), lambda)), initial_theta, options);
    % end 
    

    for c=1:num_labels
      initial_theta = zeros(n+1,1);
      options = optimset('GradObj', 'on', 'MaxIter', 50);
      %调用fmincg库函数求出所有分类器的θ向量
      [theta] = ...
        fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
            initial_theta, options);
      %将每个θ放入all_theta的每一行中
      all_theta(c,:) = theta';

    % =========================================================================
    
    end

    运行结果:

    num_labels 为分类器个数,共10个,每个分类器(模型)用来识别10个数字中的某一个。

    我们一共有5000个样本,每个样本有400个特征变量,因此:模型参数θ向量有401个元素。

    initial_theta = zeros(n+1,1); % 模型参数θ的初始值(n == 400)

    all_theta是一个10*401的矩阵,每一行存储着一个分类器(模型)的模型参数θ向量,执行上面for循环,就调用fmincg库函数求出了所有模型的参数θ向量了。

    1.4.1 一对多预测

    训练完分类器以后,可以使用它来预测图像代表的数字,对于每个输入,使用经过训练的逻辑回归分类器来计算属于每个类别的概率,最后输出概率最高的一个作为预测的结果。

    完成predictOneVsAll.m中的代码:

    max函数的用法

    function p = predictOneVsAll(all_theta, X)
    m = size(X, 1);
    num_labels = size(all_theta, 1); % 定义num_labels为all_theta矩阵的行数(本例中为10)
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    [x,p] = max(sigmoid(X*all_theta'),[],2); %返回的p为预测函数中最大值的行号
    
    end

    调用函数,看一下预测准确率:

    pred = predictOneVsAll(all_theta, X);
    
    fprintf('
    Training Set Accuracy: %f
    ', mean(double(pred == y)) * 100);

    输出结果:

    2. 神经网络

    2.1 模型表示

     本神经网络中,参数已经训练完并给出,只需要加载到theta_1和theta_2中,该神经网络在第二层有25个单位,在输出层有10个单位,完成predict.m中的代码

    function p = predict(Theta1, Theta2, X)
    
    % Useful values
    m = size(X, 1);
    num_labels = size(Theta2, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    a1 = [ones(m, 1) X]; % 输入层 a1是X前加一列
    a2 = [ones(m,1) sigmoid(a1 * Theta1')]; % 隐藏层 a2是用theta_1计算出的第二层
    [x, p] = max(sigmoid(a2 * Theta2'), [], 2); % 输出层
    
    end

     预测结果:

     

  • 相关阅读:
    高效求解素数
    搭建redis集群
    搭建Spark高可用集群
    redis持久化
    elasticsearch简介
    java反射机制
    hdfs的客户端操作
    hdfs运行机制
    大数据概念
    hive
  • 原文地址:https://www.cnblogs.com/vzyk/p/11667891.html
Copyright © 2011-2022 走看看