zoukankan      html  css  js  c++  java
  • poj-2528-Mayor's posters

    poj-2528-Mayor's posters
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 57305   Accepted: 16575
    Description
    The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 
    • Every candidate can place exactly one poster on the wall. 
    • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
    • The wall is divided into segments and the width of each segment is one byte. 
    • Each poster must completely cover a contiguous number of wall segments.
     
    They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
    Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 
    Input
    The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
    Output
    For each input data set print the number of visible posters after all the posters are placed. 
     
    The picture below illustrates the case of the sample input. 
    Sample Input
    1
    5
    1 4
    2 6
    8 10
    3 4
    7 10
    Sample Output
    4
    Source
     
    离散化
    #include <iostream>
    #include <string.h>
    #include <stdio.h>
    #include <algorithm>
    #include <math.h>
    #include <vector>
    using namespace std;
    typedef long long LL;
    const int oo = 0xfffffff;
    const int maxn = 110007;
    #define lson rt<<1
    #define rson rt<<1|1
    int L[maxn], R[maxn], Hash[maxn<<2], hn;
     
    struct da
    {
        int l, r;
        int len()
        {
            return r-l+1;
        }
        int iscover;
    } tree[maxn<<2];
     
    void build(int l, int r, int rt)// ½¨Ò»¿ÃÊ÷
    {
        tree[rt].l = l;
        tree[rt].r = r;
        tree[rt].iscover = 0;
        if(l == r)
        {
            return ;
        }
        int mid = (l+r)/2;
        build(l, mid, rt*2);
        build(mid+1, r, rson);
    }
    bool update(int l, int r,  int rt)
    {
        if(tree[rt].iscover == 1) return false;
     
        if(tree[rt].l == l && r == tree[rt].r && tree[rt].iscover==0)
        {
            tree[rt].iscover = 1;
            return true;
        }
     
        int mid = (tree[rt].l+tree[rt].r)/2;
        bool ans;
     
        if(r <= mid)  ans = update(l, r, lson);
        else if(l > mid) ans = update(l, r, rson);
        else
        {
            bool la, lb;
     
            la = update(l, mid,  lson);
            lb = update(mid+1, r, rson);
     
            ans = la|lb;
        }
        
        if(tree[lson].iscover && tree[rson].iscover)
            tree[rt].iscover = 1;
            
        return ans;
    }
    int main()
    {
        int T, i, n;
        scanf("%d", &T);
        while(T--)
        {
            scanf("%d", &n);
            hn = 0;
            for(i = 1; i <= n; i++)
            {
                scanf("%d %d", &L[i], &R[i]);
                Hash[hn++] = L[i];
                Hash[hn++] = L[i]-1;
                Hash[hn++] = R[i];
                Hash[hn++] = R[i]+1;
            }
     
            sort(Hash, Hash+hn);
     
            hn = unique(Hash, Hash+hn)-Hash;
     
            build(1, hn, 1);
            int ans=0;
            for(i = n; i>=1; i--)
            {
                int a, b;
                a = lower_bound(Hash, Hash+hn, L[i])-Hash;
                b = lower_bound(Hash, Hash+hn, R[i])-Hash;
                if(update(a, b, 1) == true)
                    ans++;
            }
            printf("%d
    ", ans);
        }
     
        return 0;
    }
    /*
    3
    10 11
    10 10
    11 11
     
    4
    10 12
    10 10
    11 11
    12 12
     
    2
    3
    */
  • 相关阅读:
    synchronized底层实现学习
    [Alink漫谈之三] AllReduce通信模型
    Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构
    Alink漫谈(一) : 从KMeans算法实现不同看Alink设计思想
    [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码生成 (修订版)
    从"UDF不应有状态" 切入来剖析Flink SQL代码生成
    [源码分析] 带你梳理 Flink SQL / Table API内部执行流程
    [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林
    [源码分析] 从FlatMap用法到Flink的内部实现
    Ceph 14.2.5-K8S 使用Ceph存储实战 -- <6>
  • 原文地址:https://www.cnblogs.com/w-y-1/p/5738442.html
Copyright © 2011-2022 走看看