zoukankan      html  css  js  c++  java
  • spark 数据分析

    //使用kmeans算法进行微博聚类分析

    //scala版本

    package com.swust.machine.line.kmeans
    
    import org.apache.lucene.analysis.TokenStream
    import org.apache.lucene.analysis.tokenattributes.CharTermAttribute
    import org.apache.spark.broadcast.Broadcast
    import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
    import org.apache.spark.mllib.feature.{HashingTF, IDF, IDFModel}
    import org.apache.spark.mllib.linalg
    import org.apache.spark.rdd.RDD
    import org.apache.spark.{SparkConf, SparkContext}
    import org.wltea.analyzer.lucene.IKAnalyzer
    
    import scala.collection.mutable.{ArrayBuffer, ListBuffer}
    
    object ScalaKmeans {
      def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local").setAppName("kmeans")
        val sc = new SparkContext(conf)
        //sc.setLogLevel("error")
        val input: RDD[String] = sc.textFile("./data/original.txt")
        //获取切词后的内容 k-v格式 k为微博id v为分词内容
        val wordRDD: RDD[(String, ArrayBuffer[String])] = input.mapPartitions(iterator => {
          val list = new ListBuffer[(String, ArrayBuffer[String])]
          while (iterator.hasNext) {
            //创建分词对象
            val analyzer = new IKAnalyzer(true)
            val line = iterator.next()
            val textData: Array[String] = line.split("	")
            val id: String = textData(0)
            val text: String = textData(1)
            //创建分词对象
            val ts: TokenStream = analyzer.tokenStream("", text)
            val term: CharTermAttribute = ts.getAttribute(classOf[CharTermAttribute])
            ts.reset()
            val arr = new ArrayBuffer[String]
            //遍历分词数据
            while (ts.incrementToken()) {
              arr.+=:(term.toString)
            }
            list.append((id, arr))
          }
          list.iterator
        })
        wordRDD.cache()
        //计算词频
        val hashingTF:HashingTF = new HashingTF(1000)
        val TFRdd: RDD[(String, linalg.Vector)] = wordRDD.map(one => {
          val value: ArrayBuffer[String] = one._2
          (one._1, hashingTF.transform(value))
        })
        //计算逆文本频率
        val idf: IDFModel = new IDF().fit(TFRdd.map(one => {
          one._2
        }))
        //计算每一篇微博的If-Idf值
        val tf_Idfs: RDD[(String, linalg.Vector)] = TFRdd.mapValues(one =>{
           idf.transform(one)
        })
        //根据排序映射tf_Idfs里面的每个位置到底是哪一个分词
        //按照每个词由hashingTF 映射的分区号由小到大排序,得到的每个词组对应以上得到的tfIdfs 值的顺序
        val wordTfIdf: RDD[(String, ArrayBuffer[String])] = wordRDD.mapValues(one => {
          one.distinct.sortBy(item => {
            hashingTF.indexOf(item)
          })
        })
        //使用kmeans聚类算法
        //创建Kmeans聚类对象
        val kmeans = new KMeans()
        //设置聚类中心个数
        val  cluster = 20
        kmeans.setK(cluster)
        //使用kmeans++算法
        kmeans.setInitializationMode("k-means||")
        //设置最大迭代次数
        kmeans.setMaxIterations(1000)
        //进行模型训练
        val model: KMeansModel = kmeans.run(tf_Idfs.map(one => {
          one._2
        }))
    
        //输出模型的20个中心点
        println(model.clusterCenters)
    
        //使用训练出来的kmeans模型 进行数据预测
        // 使用广播变量将模型广播
        val modelBroadcast: Broadcast[KMeansModel] = sc.broadcast(model)
        //进行训练模型预测
        val predicetion: RDD[(String, Int)] = tf_Idfs.mapValues(vector => {
          //从广播变量中获取model
          val kmeansModel: KMeansModel = modelBroadcast.value
          kmeansModel.predict(vector)
        })
        //总结预测结果
        val result: RDD[(String, (linalg.Vector, ArrayBuffer[String]))] = tf_Idfs.join(wordTfIdf)
        val res: RDD[(String, (Int, (linalg.Vector, ArrayBuffer[String])))] = predicetion.join(result)
        //查看0号类别中tf-idf较高的词汇 代表这个类的主题
        val firstRes: RDD[(String, (Int, (linalg.Vector, ArrayBuffer[String])))] = res.filter(one => {
          one._2._1 == 1
        })
        val flatRes: RDD[(Double, String)] = firstRes.flatMap(line => {
          val tf: linalg.Vector = line._2._2._1
          val words: ArrayBuffer[String] = line._2._2._2
          val list = new ListBuffer[(Double, String)]
          for (i <- 0 until (words.length)) {
            //追加词频 和 词的内容
            //value 表示当前单词在所指定的1000个向量中的位置
            //每一个位置对应一个词和一个词频
            val value: Int = hashingTF.indexOf(words(i))
            list.append((tf(value), words(i)))
          }
          list
        })
        flatRes.sortBy(_._1,false)//根据词频降序排序
          .map(_._2)//拿到所对应的词
          .filter(_.length>1)//过滤
          .distinct()//去除重复数据
          .take(30)
          .foreach(println)
    
        sc.stop()
      }
    }
    

      

  • 相关阅读:
    Linux下设置 Tomcat JDK MySQL运用平台
    引见在Linux把持细碎下装置Tomcat的要领
    在linux下的freetds装置体式款式
    介绍两款超级小的linux,可以安排在u盘里玩
    在Debian环境下架设PPPoE效劳器2
    GRUB2 指导按次的开展目标
    Linux下设置配备布置服从完美的Web效力器
    Ubuntu Linux体系创设FTP办事器装备步调
    高效运用Linux的七个好习气2
    Ubuntu Linux 8.04零碎JAVA环境设置装备陈设体式格式
  • 原文地址:https://www.cnblogs.com/walxt/p/12814863.html
Copyright © 2011-2022 走看看