zoukankan      html  css  js  c++  java
  • MNIST手写数字识别

    这是kaggle的一个入门赛,链接:Digit Recognizer

    1. 导入所需模块

    import os
    import math
    import pandas as pd
    import numpy as np
    from sklearn.model_selection import train_test_split
    import torch
    from torch.utils.data import DataLoader, Dataset
    import matplotlib.pyplot as plt
    import torch.nn as nn
    from torch.autograd import Variable
    from torch.nn import functional as F
    from torchvision import transforms
    

    2. 读取CSV文件

    dataframe_train_valid = pd.read_csv(os.path.join('input', 'train.csv'), dtype=np.float32)
    dataframe_test = pd.read_csv(os.path.join('input', 'test.csv'), dtype=np.float32)
    

    3. 准备数据

    class mnist_data(Dataset):
        def __init__(self, type, dataframe, transform):
            if type == 'train' or type == 'valid':
                labels = dataframe.label.values 
                features = (dataframe.loc[:, dataframe.columns != "label"].values) 
                # 划分训练集与验证集
                features_train, features_valid, labels_train, labels_valid = 
                train_test_split(features, labels, test_size=0.2, random_state=0)
                if type == 'train':
                    self.X = features_train.reshape((-1,28,28))
                    self.y = labels_train
                elif type == 'valid':
                    self.X = features_valid.reshape((-1,28,28))
                    self.y = labels_valid
            if type == 'test':
                self.X = dataframe.values.reshape((-1,28,28))
                self.y = None
            self.transform = transform
        
        def __getitem__(self, index):
            if self.y is not None:
                return self.y[index], self.transform(self.X[index])
            else:
                return self.transform(self.X[index])
        
        def __len__(self):
            return self.X.shape[0]
    
    batch_size = 256
    train_dataset = mnist_data('train', dataframe_train_valid, 
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize(mean=(0.1307,), std=(0.3081,))
                               ]))
    valid_dataset = mnist_data('valid', dataframe_train_valid, 
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize(mean=(0.1307,), std=(0.3081,))
                               ]))
    test_dataset = mnist_data('test', dataframe_test, 
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize(mean=(0.1307,), std=(0.3081,))
                               ]))
    train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=False)
    valid_dataloader = DataLoader(dataset=valid_dataset, batch_size=batch_size, shuffle=False)
    test_dataloader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
    

    4. 定义模型

    # 定义基本模块
    class BasicBlock(nn.Module):  
        def __init__(self, in_channel, out_channel, kernel_size, stride, padding): 
            super(BasicBlock, self).__init__()
            self.model = nn.Sequential(
                nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding),
                nn.BatchNorm2d(out_channel),
                nn.ReLU(inplace=True),
                nn.Conv2d(out_channel, out_channel, kernel_size, stride, padding),
                nn.BatchNorm2d(out_channel),
                nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        
        def forward(self, x):
            out = self.model(x)
            return out
    # 定义模型
    class Net(nn.Module):
        def __init__(self, num_classes=10):
            super(Net, self).__init__()
            self.model = nn.Sequential(
                BasicBlock(1, 64, 3, 1, 1),
                BasicBlock(64, 64, 3, 1, 1),
                BasicBlock(64, 256, 3, 1, 1)
            )
            self.maxpool = nn.MaxPool2d(3)
            self.fc = nn.Sequential(
                nn.Linear(256, 64),
                nn.BatchNorm1d(64),
                nn.ReLU(),
                nn.Linear(64, num_classes)
            )
        def forward(self, x):
            out = self.model(x)
            out = self.maxpool(out)
            out = out.view(out.size(0), -1)
            out = self.fc(out)
            return out
        
    # 获取模型
    def my_net(pretrained=False, **kwargs):
        model = Net(**kwargs)
        if pretrained: 
        # 加载预训练模型
            model.load_state_dict(torch.load('mymodel.pt'))
        return model
    

    5. 训练

    model = my_net(pretrained=False)
    # 选择优化器
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
    # 选择loss function
    criterion = nn.CrossEntropyLoss()
    # 若训练时测量值(如loss)停滞,则调整学习率
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 
                                                           patience=1, 
                                                           verbose=1,
                                                           factor=0.5, 
                                                           min_lr=1e-5)
    # 使用gpu进行训练
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model.to(device)
    criterion.to(device)
    
    count = 0
    loss_list = []
    iteration_list = []
    accuracy_list = []
    best_accuracy = 0
    for epoch in range(80):
        for i, (labels, images) in enumerate(train_dataloader):
            train = Variable(images.type(torch.FloatTensor)).to(device)
            labels = Variable(labels.type(torch.LongTensor)).to(device)
            
            optimizer.zero_grad()
            outputs = model(train)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            count = count + 1
            if count % 50 == 0:
            # 检查loss与该模型在验证集下的识别准确率
                correct = 0
                total = 0
                for i, (labels, images) in enumerate(valid_dataloader):
                    valid = Variable(images.type(torch.FloatTensor)).to(device)
                    labels = Variable(labels.type(torch.LongTensor)).to(device)
                    outputs = model(valid)
                    predicted = torch.max(outputs.data, 1)[1]
                    total += len(labels)
                    correct += (predicted == labels).sum()
                accuracy = 100 * correct / float(total)
                loss_list.append(loss.data)
                iteration_list.append(count)
                accuracy_list.append(accuracy)
                print('Iteration: {}  Loss: {}  Accuracy: {} %'.format(count, 
                                                                       loss.data, 
                                                                       accuracy))
                if accuracy > best_accuracy:
                    torch.save(model.state_dict(),'mymodel.pt')
        scheduler.step(loss)
    

    6. 训练过程可视化

    # 可视化loss 
    plt.plot(iteration_list,loss_list)
    plt.xlabel("Number of iteration")
    plt.ylabel("Loss")
    plt.title("Loss vs Number of iteration")
    plt.savefig('loss.png')
    plt.show()
    
    # 可视化accuracy 
    plt.plot(iteration_list,accuracy_list,color = "red")
    plt.xlabel("Number of iteration")
    plt.ylabel("Accuracy")
    plt.title("Accuracy vs Number of iteration")
    plt.savefig('accuracy.png')
    plt.show()
    

    7. 测试

    model = my_net(pretrained=True)
    model.eval()
    model.to(device)
    prediction = []
    with torch.no_grad():
        for i, images in enumerate(test_dataloader):
            test = Variable(images.type(torch.FloatTensor)).to(device)
            outputs = model(test)
            predicted = torch.max(outputs.data, 1)[1]
            prediction.append(predicted.cpu())
    

    8. 生成提交文件

    p = [x.numpy() for x in prediction]
    p = np.array(p)
    p = np.hstack(p)
    print(p.shape)
    submission =  pd.DataFrame({
            "ImageId": np.arange(len(p))+1,
            "Label": p.tolist()
    })
    submission.to_csv('my_submission_resnet.csv', index=False)
    print(submission)
    

    9. 结果

  • 相关阅读:
    Hardware Virtualization
    Windows Vista 中脱机文件的更改
    Vista右键打开方式有两个记事本。
    SQL Server 2008 无法采用SQL认证模式登录(已解决)
    .NET 书籍推荐
    快速掌握一个语言最常用的50% 孟岩
    [原创] 大内存妙用 之 Readyboost 篇
    .Net 中的反射 14
    pureMVC使用实践
    有关于movieClip的一些问题
  • 原文地址:https://www.cnblogs.com/wang-haoran/p/13424734.html
Copyright © 2011-2022 走看看